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ABSTRACT

Many musical compositions from the end of the nineteenth century and the beginning of

the twentieth century retain some elements of functional tonality but abandon others. Most

analytical methods are designed to address either tonal music or atonal music, but no single

method completely illuminates this body of extended-tonal music. While both tonal and

post-tonal theory have been extended in various ways to address this music, the use of tonal

theory for analysis of this repertoire has not been completely formalized. The main obstacle

for prolongational views of extended tonality is finding sufficient conditions for establishing

that certain harmonies are structural in the absence of traditional harmonic function. In

this regard, acoustical measures of stability, motivic connections, and chord equivalence

all may form a part in determining the structural harmonies. Prolongational analyses of

music may be represented by Schenkerian notation or transformational networks based on

Lewin’s Generalized Musical Intervals and Transformations (1987). This study explores a

number of specific graphing techniques, including the diatonic lattice (Jones 2002), the just-

intonation Tonnetz, and mod-12/mod-7 prolongational networks. After using group theory

to explore the relationship of diatonic scale theory and tuning theory to transformational and

prolongational analysis, excerpts from Wolf, Wagner, and Ravel are analyzed using mod-7

transformations. In giving support for prolongational analyses of chromatic and neo-tonal

music, this study provides a case for tonality-based approaches to post-functional harmony.
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CHAPTER 1

CHROMATIC HARMONY, DIATONIC SCALE THEORY,

AND POST-TONAL PROLONGATION

1.1 Introduction

Analytical approaches to tonality have generally attempted to provide some kind of

internal justification and consistency in their applicability to all works in the genre. When

applied to extended-tonal1 and post-tonal musics, these approaches frequently fail to find

such internal coherence.2 Straus (1987) enumerates important criteria for finding defensible

prolongations in non-tertian music.3 This study addresses how one may distinguish structural

from transient tones within a non-tertian harmonic language that clouds the difference

between melodic and harmonic intervals. One aspect of the work toward a prolongational

model of post-functional music will involve developing a structured approach to tonally

interpreting post-tonal music that preserves at least harmonic function, parsimonious voice

leading, or an underlying diatonic scale.

Much of the groundwork for such an approach has been laid by Jones (2002). According

to Maisel (1999, 178), prolongation must be “organized around a single musical object—

be it a chord, an interval, or a single pitch.”4 Further, “one must be able to show on the

surface of the music how the listener could, in principle at least, cognitively organize the

1Here I use the term “extended tonality” in the same sense as Samson (1977, 151–153) to refer to music
where sonorities are non-tertian or do not follow typical tonal harmonic function. This suppression of some
aspects of traditional tonal hierarchies can be seen in passages from many nineteenth-century composers’
music (Liszt, Wagner, Brahms, et al.) and in works by many twentieth-century composers (Scriabin,
Schoenberg, Berg, Richard Strauss, Debussy, Prokofiev, et al.).

2Tonal approaches to this repertoire have frequently followed Schenker’s analytical methodology or some
reworking thereof. See Section 1.4 for a survey of such approaches. Other tonal theories commonly applied
to chromatic music include neo-Riemannian and other function-theory approaches such as Harrison 1994.
See Section 1.2 for a discussion of neo-Riemannian Tonnetz theory.

3Q.v. Section 1.4.
4Jones’s approach suggests a view that prolongation can also connect two musical objects with the same

tonal function. As the determination of function is more problematic in post-tonal music, Maisel’s more
conservative view may allow for more convincing readings.
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intervening music so as to be able to connect distant points.”5 Jones (2002) provides a

systematic means of finding salient contrapuntal connections between two sonorities using a

property that he calls pervasive fluency (PF). Provided that a diatonic reading of a passage

is possible,6 pervasive fluency can offer the means of cognitively connecting two sonorities,

regardless of whether they are tertian or whether the music follows traditional principles

of functional harmonic progression.7 The remaining problem is the need for criteria for

establishing the sonorities that are to be heard as being structural. A possible solution

for determining contextual stability relies upon whether the chords are referential. Several

ways of establishing this quality deserve to be examined, including set-class equivalence and

motivic association.8 Further, we shall discuss the drawbacks of salience- and motive-based

models and work toward a framework within which a prolongational span may be tested.

Provided the methodology and analytical notation necessary for effectively showing

prolongational views of chromatic music and even of some post-tonal music, we can thus

attempt to refine the existing tools for supporting hierarchical views of non-functional

harmony and for aiding the analyst in making decisions on whether the music in fact

maintains tonal paradigms. Thus, in addition to contributing to the existing analytical

approaches for music on the fringes of tonal practice that view harmony from a tonal

perspective, this project may also assist the analyst in the process of differentiating the

distinctive properties of tonal and post-tonal musical languages. In this secondary purpose,

I do not intend to make definitive judgments regarding the status of any music as belonging

to the tonal or post-tonal repertoire. Instead, I hope that this study can give a clear sense of

overlap between tonal (hierarchical) and post-tonal (associational) analytical methodologies

for the music in question and that it can offer the possibility of fusing tonal and post-tonal

analytical approaches in those works that feature characteristics of both harmonic languages.

The utility of this study lies in its applications in three areas. The first area of application

is conceptual, offering a theoretical model supporting the claim that fundamentally tonal

ways of hearing music can be informative in non-tertian and non-functional repertoires.

Second, possibilities of musical interpretation based on the hierarchical structures and any

5This typically involves linear hearing of the intervening music. Jones’s model derives from this
contrapuntal practice of tonal hearing.

6In Chapter 4 we shall investigate what qualities distinguish diatonically unambiguous passages from
blatantly post-tonal chromaticism.

7Jones’s model in fact privileges tertian music, because of the properties of diatonic parsimony within the
tertian system, as shown by Agmon (1991). Jones thus restricts his analytical purview to tertian harmony,
albeit often highly chromatic and non-functional.

8Of course, prolongation need not be restricted to spans between sonorities of the same set class. A
simple example of a prolongation connecting two distinct chord qualities is IV6 passing through I64 to ii65.
Prolongation may thus be asserted provided that the analyst can support a claim for the two sonorities’
possessing the same harmonic function with linear motion connecting them. Asserting equivalence of function
may prove a more difficult task in non-functional harmony. See footnote 4.
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tonal ambiguities or conflicts can be suggested through the specific cases of the given analyses.

Finally, cognitive structures elucidated by the theory can aid in decision-making with regard

to issues of performance practice of the chromatic and post-tonal repertoire in question.

After surveying literature on diatonic scale theory, recent theories of chromatic harmony,

and prolongational analysis of post-tonal works, in Chapters 2 and 3 we shall explore

diatonic transformational models for analyzing music and discuss their theoretical basis and

relationships. Then, Chapter 4 will focus specifically on the idea of prolongation in post-

functional music, the context in which chordal stability and transience may be asserted,

and the pitfalls of haphazard prolongational analysis. While the emphasis in this treatise

is theoretical, examples of analysis using mod-12/mod-7 transformations will be used in

Chapter 5 to show some areas of their potential use. The mod-12/mod-7 transformational

model will first be used to show features of chromatic harmony and directional tonality.

These examples will be drawn from Hugo Wolf’s Italianisches Liederbuch. Non-functional

progressions in the Prelude of Richard Wagner’s Tristan und Isolde will also receive treatment

using diatonic analysis. Finally, mod-12/7 transformations will be used to show the

possibility of prolongation in non-tertian and non-functional portions of Maurice Ravel’s

Valses Nobles et Sentimentales and Gaspard de la Nuit.

1.2 Recent Theories of Nineteenth-Century Chromatic Music

Neo-Riemannian Theory

Neo-Riemannian theory centers around two spatial perspectives of chromatic harmony:

the Tonnetz (tonal network), and transformational graphs first developed by Riemann (1880)

and then formalized by Lewin (1987). The Tonnetz has appeared in various guises as a

representation of pitch-class space that allows for the spatial mapping of harmonic motion.

Morris (1998) calls these spatial maps “compositional spaces” and proposes similar types of

graphs that focus on parsimonious stepwise connections among pitch classes called “voice-

leading spaces.” Cohn (1997) gives a brief history of the Tonnetz, which can be traced from

its origins in Euler (1773) and its development by Oettingen (1866) through its significant use

by Riemann (1915). Mooney (1996) gives a history of more recent work using the Tonnetz,

and Hyer (1995) contributes significant refinements (e.g. 12-tone equal temperament applied

to the Tonnetz) that were influential in its late-twentieth-century revival.9

9For older representations of tonal space (including the 3-limit space that we shall explore in Chapter 2),
see Carey and Clampitt 1996a.

3



The Tonnetz offers at least two distinct ways of visualizing music meaningfully.10 The

first is the use of the just-intonation Tonnetz model to chart the motion of chromatic music

through different key areas. The work of Harrison (2002) explores this area of research,

especially in enharmonic progressions. The second use of the Tonnetz is as a spatial map of

the voice leading between chords. With regard to equally-tempered views of the Tonnetz,

much of the work of neo-Riemannian scholars11 has centered around parsimonious voice

leading, defining mathematical groups of voice-leading transformations that can be visualized

on two- and three-dimensional Tonnetze. In Chapter 2, we shall examine several related

mathematical groups and use them to build a set of relationships in tonal space that can be

viewed on the Tonnetz.

Riemann (1880) is generally credited with the first creation of the types of diagrams

of chordal relations that would evolve into transformational networks in Lewin’s (1987)

work.12 Transformational graphs appear extensively in Lewin’s subsequent work, in the

neo-Riemannian issue of the Journal of Music Theory (42/2, 1998), and in a large amount of

more recent scholarship. Hook (2002) provides a summary and bibliography of the literature,

and contributes a unified system of transformations for triads. In Chapter 3, we shall

consider a model for transformational networks that draws upon the features of Lewin’s

(1987) fundamental-bass networks and prolongational networks.

Diatonic Perspectives

Neo-Riemannian theory is designed specifically to describe those passages of chromatic

harmony where tertian sonorities participate in non-functional progressions. It does not,

however, provide the means by which one can incorporate the passages into a hierarchical

analysis of the music. Neo-Riemannian analysis also does not address the relation of the non-

functional passages with the diatonic scale that contributes to defining the tonality of the

piece as a whole. The diatonic basis of these chromatic passages has been extensively debated

in the literature. Proctor (1978, 149 ff) and McCreless (1983, 60–62) assert that when

chromatic progressions transcend the established functional harmonic paradigms (diatonic

root motion, diatonic resolution of unstable intervals, etc.), a diatonic harmonic foundation

is no longer present. The neo-Riemannian theorists often take this perspective as well.

10A third use of the Tonnetz is found in the spatial representation of the ratios of just intonation and
the relationship between just intonation and any practical tuning in common use. Because each new
prime generator appended to the list of possible “consonances” adds another dimension to the tuning lattice,
four- and five- dimensional constructions are possible and perhaps useful. This use of the Tonnetz will be
addressed in detail in Chapter 3.

11E.g., Childs 1998, Douthett and Steinbach 1998, and Baker 2003
12See Klumpenhouwer 2002.
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For example, Cohn (1998a, 171) addresses this issue when discussing Lewin 1987: “[T]he

transformations in GMIT remain conceptually independent of diatonic tonality.” On the

other hand, Smith (1986, 109) and Harrison (1994) give arguments for the diatonic basis of

harmonic function in chromaticism, and Brown (1986) presents Schenker’s chart of Stufen

(containing every chromatic degree except ]IV/[V) as a counterexample to McCreless and

Proctor. More recently, Samarotto (2003) identified areas of conflict between the two views

and provided a (tonal) conceptual model for the perception of the tonal conflicts in Brahms’s

most chromatic music. Jones (2002, 111) argues for the local diatonic interpretation of

chordal successions, and builds upon Smith’s view, asserting that a fundamentally diatonic

distinction between stepwise motion (minor second) and chromatic inflection (augmented

unison) is part of most trained listeners’ perceptions of chromatic music. This study is based

largely upon this perspective of chromaticism.

1.3 Diatonic Theory

Diatonic scale theorists speculate about the desirable properties of musical scales.13 The

diatonic/chromatic system used in tonal music is overdetermined. Several theoretically and

historically important scales can be generated from cycles of fifths that are tempered by

particular commas. The diatonic scale is the maximally even distribution of 7 notes within

the 12-note chromatic scale. Likewise, the triad and seventh chord are maximally even

distributions of 3 and 4 notes within the 7-note diatonic scale.14 Because of the strong

theoretical underpinning for the primacy of the triad and the 7-note diatonic scale established

by theorists such as Agmon (1989, 1991), the theory has been extended into analysis of tonal

music as the interaction of mod-12 and mod-7 systems by theorists such as Santa (1999) and

Jones (2002).

Santa’s dissertation “argues that the problems inherent in analyzing post-tonal diatonic

music can be solved by a careful application of set theory modulo 7, in interaction with

the more familiar mod-12 set theory.” Along with the use of mod-7 set theory, Santa

gives algorithmic procedures for gauging a passage’s or work’s centricity and a note’s or

chord’s salience. In Santa’s methodology for finding structural levels in diatonic post-tonal

music, the finding of salient tones, traditional ornamental patterns, and motivic associations

all contribute to the determination of structural and transient tones. While Santa’s work

arguably provides an associational theory of levels (following the recommendations of Straus

13Clough, Engebretsen, and Kochavi 1999, Carey 1998, Santa 1999, and Jones 2002 give complete
bibliographies of the diatonic theory literature.

14Maximal evenness is defined by Clough and Douthett (1991).
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(1987)) rather than a prolongational theory, when viewed from this perspective his analyses

are informative and useful.

While Santa uses measurements of salience and motivic association to assert prolongation,

Jones (2002) uses mod-12 and mod-7 systems to build upon more traditional notions of

prolongational structure. Jones also provides a valuable way of visualizing Santa’s “step

classes.”15 Figure 1.1, which is based upon Jones’s Example 2–2, p. 92, shows an example

of the diatonic lattice. It represents the twelve chords between mm. 12 and 25 of Chopin’s

Scherzo, Op. 54. Vertically aligned mod-12 pitch-class integers on the lattice form chords

(with A standing for pitch class 10, and B for pitch class 11). The placement of those 12-

tone pc numbers on the 7 horizontal rows of the lattice (mod 7) indicate their relationships

within the diatonic scale. It is thus a compelling method for visually rendering the interaction

between the chromatic and diatonic realms. It may help to imagine the lattice as a cylinder

where top and bottom levels are adjacent. If we rotate the cylinder so that it is seen from

its edge, the mod-7 space becomes a kind of clock face with 7 hours on it. Horizontal and

vertical lines are added around each pitch-class integer in the lattice in order to make it easy

to read. The vertical lines on the lattice connect the members of each chord, and horizontal

lines anticipate the“height”of each new tone relative to the diatonic positions of the members

of the previous chord.

| | | |--3--2 |--3--3 |--3 |
|--1 |--1 | |--1--1 |--1 | |

--B |--B |--B--B | |--0 |--B--B
|--A |--A | |--9--9 | | | |

--8 |--8--7 |--8 | |--8--8 |--8
|--6 | |--6 |--6--6 | |--6 |

--4--4--4--4 |--5 | | |--4 |--4

Figure 1.1: Diatonic Lattice of Chopin, Scherzo, Op. 54, mm. 12–25

In addition to providing a compelling way of displaying diatonic space, the diatonic lattice

also allows the analyst to visualize the diatonic contrapuntal lines that connect the structural

chords in a prolongation. For this purpose Jones defines a property that he calls “pervasive

fluency”(PF). When a chord progression can be heard as a harmonic prolongation, pervasive

fluency offers a way of describing the contrapuntal pitch-class motions that create a sense of

transience in the progression. Two types of primitive lines are permitted in pervasively fluent

15For an earlier invocation of musical representation using both mod-12 and mod-7 pitch-class integers see
Brinkman 1986. Brinkman uses the term “name class” instead of Santa’s “step class”. In Chapter 2, I shall
add a mod-3 term to Brinkman’s ordered pair pitch-class representations to account for syntonic-comma
differences on the Tonnetz.
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passages (PFPs). A passing line may move only in a stepwise fashion from the initial chord

to the final chord of the prolongation and may never reverse direction. It may also linger on

any level of the lattice for any length of time. Similarly, a neighboring line may move only

in a stepwise fashion and may linger for any stretch of time at one vertical position on the

lattice. Any neighboring line, however, may only diverge vertically from its original location

on the lattice by one diatonic step (either up or down), and must return to its initial level

only once, and remain there until the final chord of the prolongation is reached. Once all

primitive lines have been found between one pair of chords in the passage, we can determine

whether it exhibits pervasive fluency by noting the starting and ending pitch classes of each

line. A passage is pervasively fluent as long as a primitive line extends from every member

of the first chord to some member of the last chord and from every member of the last chord

back to some member of the first chord.

From this definition we can observe that the first five chords of Figure 1.1 form a PFP.

Primitive lines extend from pitch class 4 in the first chord to pitch classes 3, and 6, and 11

in the fifth chord, from pitch class 8 in the first chord to pitch class 3 in the fifth chord, and

from pitch class 11 in the first chord to pitch class 5 in the fifth chord. It would perhaps

make more musical sense, however, to split this transient progression from a structural tonic

harmony to a structural dominant harmony into two separate PFPs. First we would show

the prolongation from the first chord to the third chord as neighbor motion ornamenting the

tonic chord, and then from the third chord to the fifth chord as primarily passing motion with

one chromatic lower neighbor embellishing 5̂.16 Pervasive fluency provides the contrapuntal

connections to support an abundance of potentially transient spans. In this case we were

able to rely on traditional tonal chord function to decide which PFPs reveal a convincing

prolongational structure. If the music expands traditional tonality in certain ways, however,

pervasive fluency alone cannot help us decide what chords are structural and what chords

are transient. Jones’s model for describing the linear motion between prolonged harmonies

nevertheless functions equally well in non-tertian music, once the structural harmonies have

been chosen. In Chapter 4, we shall therefore focus primarily on methods for asserting which

chords are structural, while acknowledging the necessity of a linear view of prolongation.

16This is only one possible interpretation of this interesting passage. Jones uses this example to discuss the
voice-leading connections that support three possible interpretations of the first five chords and two possible
prolongational views of the entire passage.
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Just Intonation

In Chapter 2 we shall discover remarkable connections between diatonic scale theory and

the traditional theory of just intonation (hereinafter JI).17 These relations will be used as

a basis for defining diatonic spelling and scale-degree function. So that we may discuss the

theoretical application of JI later, I shall now define some of the main terms and notations

of tuning theory. JI is the use of harmonic and arithmetic proportions in the construction

of musical intervals.18 According to current tuning theory, the goal of tuning according to

whole-number frequency ratios is sensory consonance, embodied in beatless intervals and

chords. Sensory consonance results when the single most significant beat pattern (the first-

or second-order beat pattern) is eliminated (to the extent to which the ear is able to perceive

it). Sensory consonance is not necessarily bound to frequency ratios of two small whole

numbers. For example, an interval with the ratio 3002:2001 may be accepted by the ear as

being “just”. Nevertheless, the approximation of whole-number ratios in tuning provides a

method for achieving sensory consonance.

JI restricts the ratios possible in the system using a prime limit. Any rational number

q = a
b

in lowest terms, where a and b ∈ Z, has prime limit p if and only if a’s factors and

b’s factors ⊂ {primes ≤ p}.19 In other words, if a frequency ratio exists in JI of a particular

prime limit, all prime factors of both the numerator and denominator of the frequency ratio

(when expressed in lowest terms) are less than or equal to the prime limit. Thus, 3002:2001

does not exist in 5-limit JI, but 3:2 does. The traditional name for 3-limit JI is Pythagorean

tuning, where all intervals are measured by the number of fifths (and octaves) that comprise

them. 5-limit JI is called “just” or syntonic tuning, and adds pure major and minor thirds

to the repertory of consonances. Finally, 7-limit tuning provides certain refinements to the

tuning of seventh chords that are not part of the 5-limit system. The system of JI that I

shall introduce in Chapter 2 is a 5-limit system, but 7-limit consonances can be successfully

applied on top of the system to improve seventh chords.20 Tonal music generally does not

17Just intonation is a theoretical system, and, while it certainly can serve as the basis for a practical system
of adaptive tuning, its use here is purely in service to a theory of scale-degree function.

18The harmonic and arithmetic means were a central concept in music theory well into the eighteenth
century. As tuning theory developed in the eighteenth and nineteenth centuries, the overtone series gradually
became accepted as the scientific basis for the importance of these proportions. See Rasch 2002 and Barbour
1951 for the history of tuning and temperament, and specifically see Green 1969 for the development of
harmonic-series theory. See also footnote 17 in Section 2.2.

19The mathematical symbols used here are defined in Appendix A.
20For example, the 7-limit interval 10:7 is less than 8 cents larger than the 5-limit diminished fifth 64:45,

but may create seventh chords with less beating.
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need higher prime limits to find consonant chords. Many microtonal composers nevertheless

use higher-limit JI for interesting effects in their music.21

Although the use of JI is impractical or historically unjustified in the performance of much

of the music in this study, JI nevertheless plays a theoretical role in diatonic scale theory as

it relates to my work. The theoretical invocation of JI derives from the following rationales.

First, the theory of JI provides a traditional theoretical perspective that is fundamentally

tonal in its outlook on music, and thus can serve as a reference for making analytical decisions

about music from the tonal perspective.22 The tuning of chords in JI is based on the function

each member of the chord serves in relation to the others.23 More sophisticated notions of

tonal function all rely on this more rudimentary type of function. Second, the relationship

between JI and mod-7 diatonic theory suggests that the reconciliation of music to a mod-7

diatonic scale also represents a fundamentally tonal perspective.24 In Section 2.3, I shall give

the mathematical function by which all pitches in 5-limit JI can be mapped onto members of

the 12-tone scale and 7-tone scale. This function forms a homomorphism from 5-limit JI to

the mod-12 and mod-7 systems that are used by diatonic scale theorists and that are implicit

in common musical notation. This provides a strong mathematical (and thus conceptual)

connection between tonal music and the theoretical system of 5-limit JI, even when the music

was never intended for performance in JI. The strictures for diatonic spelling in chromatic

harmony that will be introduced in Chapter 2 thus derive from the principles of JI. I give

the JI system used for deciding diatonic spelling in Section 2.1.

1.4 Prolongation in Post-Tonal Music

There is an extensive history of the application of theories of prolongation or structural

levels to post-tonal music. Baker (1983) reviews much of the early literature. While Katz

(1945) and Oster (1960) assert that the fundamentally tonal ways of elaborating background

structures cannot be replicated in non-tonal contexts, several other theorists have made

attempts to expand the prolongational perspective to encompass post-tonal idioms that

may be seen as prolongations. Salzer (1952, 227) redefines tonality as “prolonged motion

21Among these composers are Harry Partch, Kyle Gann, James Tenney, and Ben Johnston. Compositions
in higher-limit JI often require highly trained performers or computer performance because, other than in
chords that follow the partials of the overtone series, 11- and 13-limit intervals are quite difficult to perform
accurately without considerable experience in producing them. For more on designing notation systems for
and traning performers to play in extended just intonation, see Johnston 1994.

22JI thus plays little role in the post-tonal analytical perspective that also may inform one’s hearing of the
music.

23These functional relationships can be visualized as part of a tonal space that we shall explore in Chapter 3.
24The diatonic spelling of a note is also based on a rudimentary kind of tonal function.
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within the framework of a single key-determining progression.” To Salzer, “key-determining

progressions”can be contrapuntal rather than functional. While Salzer conceptually expands

the idea of tonality and what music may be addressed by Schenker’s methods, he does not give

any systematic means for interpreting the post-tonal structures that do not match functional

harmonic procedures. Travis (1959, 1966, 1970) follows Salzer’s lead, forging further into the

post-tonal repertoire with the works of Schoenberg and Webern. Like Salzer, Travis does

not define his method for discriminating the structural from the transient, relying instead

on his ear and his intuition (and the notion that the beginning and ending sonorities tend

to be heard as being more structural).

Morgan (1976) uses the idea that a dissonant sonority may be prolonged before resolving

to create new middle and background structures for post-tonal works. As support for his

claims, Morgan provides Schenker’s analysis of a prolonged V7 chord in J. S. Bach’s C-major

Prelude (WTC I, BWV 846) and Schenker’s analysis (as a counterexample for “good” free

composition) of a passage from Stravinsky’s Concerto for piano and wind ensemble. As

Salzer and Travis before him, Morgan shows how transient tones may be interpreted as

contrapuntally elaborating structural chords without codifying how he decides what chords

are structural or how to distinguish dissonance from consonance.

Some successful prolongational treatments of chromatic harmony include McCreless 1990,

Darcy 1993, and Baker 2003. Lerdahl (1989, 73) proposes that a theory of atonal prolongation

may be based on“salience conditions”. Other scholars who have ventured into linear analysis

of Schoenberg and Berg include Väisälä (1999) and Maisel (1999). Santa (1999, 2 (fn)), in

addition to providing his own methodology for extending prolongational theory to diatonic

post-tonal music, provides an extensive bibliography of more recent approaches. Among

the sources that Santa cites, the most influential is Straus (1987). The success of any

prolongational approach to post-tonal music since Straus’s article depends in part on how

it addresses his criteria for finding prolongation. These can be simply reduced down to one

important consideration: Non-tertian music clouds the distinction between harmonic and

melodic intervals. Because Schenker’s theory depends upon this distinction for performing

linear analysis, any expansion of this theory for non-tertian music must find alternative

means for defining the ways in which transient tones elaborate upon structural chord tones

to create a sense of prolongation.

Straus’s theoretical proviso provides a worthy conservative basis for judging hierarchical

theories of post-tonal music. In building a model for prolongational analysis of non-tertian

music, one must thus establish how non-tertian chords may attain the status of structural

harmonies. Provided an alternative means for deciding what chords—even non-tertian

chords—are structural, contrapuntal lines passing between any two structural chords can still
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aid in hearing the passage prolongationally. In Chapter 4, I shall offer strategies for deciding

what is structural in extended-tonal music and provide new theoretical qualifications that

allow for a conservative evaluation of prolongational analyses.
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CHAPTER 2

JUST INTONATION AS DIATONIC INTERPRETATION

In building a model for the transformational representation of tonal structures, it will be

helpful to establish a comprehensive system of tonal relations. We can draw such a model

of tonality from the theory of diatonic scales and the closely related field of tuning and

just intonation (JI). JI has faced a great deal of controversy with regard to its practical

applications, and it need not find practical use in any of the music that we shall explore

in Chapter 5. It is my contention, nevertheless, that a theoretical JI system can aid in

discovering scale-degree functions and tonal hierarchies. While in this chapter we shall

be formulating a detailed system of 5-limit JI, and while this model for pure tuning can

be adapted for practical use, our focus here will be on the theoretical aspects of tuning.

This model of JI will be outlined in Section 2.1 in service of a larger theory of tonal

relationships. Pitches in JI are tuned based on their functions within a scale and within

the prevailing harmony, and these functions inform the diatonic spelling of these pitches and

their placement within a tonal pitch space that can be displayed on a Cartesian plane.1 The

intimate relationship between diatonic scale theory and JI is explored in Sections 2.2, 2.3,

and 2.4. This relationship will allow us to specify a mathematical function that can provide

the spelling and tuning of any pitch or pitch class in a piece of music, given its mod-12 pitch-

class integer and the key in which it functions. The coordinates of a pitch-class in tonal

space can then be graphed on the just-intonation Tonnetz or in transformation networks,

the properties of which are fully explored in Chapter 3.

1To be exact, the Cartesian-plane tuning lattice is a pitch-class space, while a three-dimensional graph is
required for exact pitch representation. Both coordinate systems are discussed in this chapter, and Chapter 3
explicates the use of two-dimensional pitch-class lattices.
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2.1 Tuning in 5-Limit Just Intonation

Just intonation (JI) has historically been portrayed as a tuning system where the chords

are tuned properly at the expense of some melodic intervals, and often at the expense of

the pitch center as well.2 While I agree with the scholars who contend that JI should hold

melodic intervals to a lesser standard than harmonically pure chords, I also believe that

the tonic pitch should ideally be stable. Ear training and sight singing are typically taught

based on scales and tonal relationships between learned scale-steps and chords (solfege or

scale-degree singing). From this, one may conclude that the system of JI that most closely

matches the pedagogical and theoretical tradition is scale-based. This type of JI can be made

rigorous in the way that I shall show in this chapter, or it can be applied—less rigorously,

but at least as effectively—to the practice of tuning voices and variable-pitch instruments in

real-time performance. I believe that (after the first note) singers perform more accurately

when they draw on their musical imagination for their tuning rather than drawing solely on

already-sounding reference pitches.3 Hence I propose the following system of JI.

Table 2.1 gives the scale that will be used for 5-limit JI.4 All diatonic (and some

chromatic) chords will use the scale degrees as spelled and tuned in the chart. The absence

of ]2̂, ]5̂ and ]6̂ in Table 2.1 suggests that, as long as the key is stable (i.e. there is no

tonicization), modal mixture is the primary source of chromatic scale-degree inflection in

tonal music.5 Indeed, with the method of JI based on this scale system, all modulations and

tonicizations (no matter how brief) require a change of scale.

2There has been a great deal of disagreement about this definition of JI. Further, it has been a common
criticism of JI itself that pure tuning tends to result in a downward drift in pitch. See Klumpenhouwer 1992,
Walker 1996, and Wibberley 2004 for three different views on this issue.

3The spirit of my perspective is in accordance with Eskelin 1994 and Mathieu 1997, although we disagree
on certain important details.

4This view of the diatonic system displays a clear affinity to the “tonic” and “phonic” constructions found
in Oettingen 1866. Oettingen thought of major and minor triads as inversionally related and expanded his
notion of “tonicity” to include the entire major scale, and “phonicity” to include the inversion of the major
scale (the Phrygian mode). One need not accept the notion of chord and key modality as contextual inversion
to understand the polarity of the Ionian and Phrygian modes as a basic source for all modal mixture and
scale-degree inflection within a key. For more background on harmonic dualism, see Harrison 1994 and Kopp
2002.

5For the sake of presenting all chords within a unified tonal space, all scale degrees and Roman numerals
that appear within a theoretical discussion are given relative to the major mode. Musical examples in this
dissertation, however, use conventional Roman numeral analysis relative to the prevailing key and mode.
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Table 2.2 outlines the procedure of tuning music in this scale-based JI system.6 The

method that is outlined in the table formalizes the use of scale “mutation” to accomodate

modulation and tonicization and also corrects some problems with the use of the scale in

Table 2.1. First, some chords with chromatic alterations such as major III and minor [vi

(chromatic mediants and double-mixture chords) are not spelled correctly when taken strictly

from Table 2.1. Table 2.2 therefore offers a formal procedure for treating these situations.

Rule 4 in the procedure also corrects an intonation problem in Table 2.1. Specifically, the

supertonic triad derived from the scale in Table 2.1 contains a poorly-tuned fifth between

2̂ and 6̂ (one syntonic comma too narrow, at 40:27).7 To correct this inconsistency in the

scale, 2̂ can be relocated to 10:9 relative to tonic for as long as the ii chord is sounding. This

may occasionally necessitate retuning a common tone between two chords (e.g. when the

supertonic chord moves to a dominant chord). This theoretical retuning is to be avoided, if

possible.

One way of avoiding this pitch shift is to tune the rest of the supertonic chord (4̂ and 6̂)

a syntonic comma higher, as long as this does not result in common-tone retunings as well.

As this second solution cannot be consistently applied, the JI system outlined in Table 2.2

tunes 2̂ at 10:9 in all cases where neither 5̂ nor 7̂ is also present in the chord that contains 2̂.

The advantage here is that, in typical situations of diatonic harmony, only 2̂ is ever inflected

by a syntonic comma. In any other instance where this tuning procedure would have 2̂ at

10:9 the likelihood of common-tone retuning is even lower. While such an intonation shift is

certainly undesirable, the distinction between the two tunings of 2̂ is not simply a byproduct

of a dogged adherence to whole-number ratios. Indeed, the distinction in the two tunings

of 2̂ maps on to the distinction between the two potential harmonic functions of 2̂—that is,

as part of a dominant chord, or as part of a pre-dominant or subdominant chord. Through

the examination of several musical examples that display peculiarities of scale-based JI we

shall now begin to explore how differences in theoretical tuning map onto other theoretical

distinctions that form part of our understanding of tonal harmony.

6Temperley 2000 inspired my own use the line of fifths in measuring tonal closeness. The line of fifths
appears in Marx 1841, vol. 1. Enharmonic equivalence, of course, creates a circle of fifths, as given by
Heinichen (1711). Following Weber (1832), one may combine the two ways of thinking into the idea of
a spiral of fifths, where conceptual difference between enharmonically equivalent places on the spiral is
maintained, but the leap from one note to its enharmonic equivalent is made easier by their radial proximity
on the spiral. This metaphor agrees with the perspective shown by this JI system. Longuet-Higgins and
Steedman (1971) also have developed a diatonic spelling method that begins with key determination by
placing the pitch-classes of the melody on the just-intonation Tonnetz. Unfortunately, their algorithm is not
comprehensive or consistent enough for our purposes.

7This problem has been known for centuries (see, for example, Mersenne 1637), and has been treated
recently by Walker (1996). For a historical survey of this dilemma, see Rasch 2002. There is a second poorly
tuned fifth in the scale in Table 2.1, namely [3̂ to [7̂. See the discussion of Figure 2.7 for the treatment of
this problem.
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Table 2.1: Preferred Diatonic Spellings/Tunings

1̂ [2̂ 2̂ [3̂ 3̂ 4̂ ]4̂ 5̂ [6̂ 6̂ [7̂ 7̂
1:1 16:15 9:8 6:5 5:4 4:3 45:32 3:2 8:5 5:3 16:9 15:8

Table 2.2: 5-Limit Just-Intonation Tuning Method

1. The scale degrees are to be spelled and tuned only as they appear in Table 2.1. If this
results in a non-tertian spelling of a chord, use the procedure given in Rule 4 to decide
the spelling of all members of the chord.

2. All dominant-function chords and tonicizations, including secondary dominants, sec-
ondary diminished seventh chords, altered dominants, and modulations, take the scale
of the tonicized key as reference.

3. Common tones are never enharmonically respelled unless they are the result of a
functional reinterpretation of a held interval between two chords (e.g. minor third
becomes augmented second, or minor seventh becomes augmented sixth). This may
result in progressions that wander diatonically (tonic becomes ]VII or [[II).

4. If the chord is not a dominant or leading-tone chord, use the scale built on the nearest
note in the triad (not the seventh) to 1̂ and 5̂ on the infinite line of fifths. In other
words, find the triad member that is closest to 1̂ and 5̂ on the line of fifths, and tune
it according to the normal diatonic scale; then tune the rest of the chord according to
the intervals of the scale that is based on that note.
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Some exceptional situations within scale-based JI are somewhat more subtle than the

syntonic-comma discrepency that we have just discussed. Because these too will have

implications with regard to the analysis of non-tertian chords and various extensions of

tonality, it will be worthwhile to work through each of these examples using the method

given in Table 2.2. First, Figure 2.1 shows a progression displaying root motion by an equal

division of the octave into three parts. In JI, of course, no interval divides the octave evenly,

since no root of 2 is rational. One must therefore decide the diatonic spelling of the chords

functionally. Rule 2 in Table 2.2 is not applicable in this case, as none of the chords has

dominant function. For this progression, Rule 1 gives the spelling I III [VI I. Rule 4 helps in

explaining this result, as the closest member of the III and [VI chords to 1̂ and 5̂ on the line of

fifths are 3̂ and 1̂, respectively. Rule 3, however, dictates that no common-tone respellings—

in this case, ]5̂/[6̂—are allowed when a change in the function of a held interval is not

present. The progression must therefore be spelled as given in Figure 2.1 and consequently

drift downward by a single diatonic step.8 We shall return to the issue of diatonic drift in

Chapter 3.
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?

##

##

˙ ˙ ˙‹ ˙˙ ˙# ˙ ˙‹

D:

˙ ˙ ˙# ˙‹

I III
#
V

#
VII

˙ ˙ ˙# ˙‹

Figure 2.1: Example of an Enharmonic Progression

Figure 2.2 shows an alternation between tonic and a dominant-replacement chord that

Cohn (1996) calls the hexatonic pole. Rules 1 and 4 give this progression the spelling shown

in the example. In this case, [3̂ is the closest member of the second chord to 1̂ and 5̂ on

the line of fifths. This case, however, is somewhat ambiguous, as some may argue that [vi

is an altered dominant chord. According to this argument, Rule 2 would give a non-tertian

spelling of this chord with all chord members serving their dominant-function roles in the

tonic key: 7̂ from V, [3̂ from [III+6 and [6̂ from vii◦7. If this chord is indeed intended as

8The term “diatonic drift” was coined by Jones (2002).
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a dissonant entity, with functional resolutions of the scale degrees built in, then this far

less consonant tuning of the chord is perhaps desirable. I am happy to allow the rules to

possess this ambiguity in order to allow for case-by-case decision-making in chords such as

the current example, the iv∅7 chord, and other inflections of traditional dominant-function

chords that appear in nineteenth-century chromatic harmony.9 In Section 5.3 we shall pursue

this ambiguity in the analysis of late-nineteenth-century chromatic harmony, where the two

possible spellings will emphasize different aspects of the musical structure.10

&
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##

##

˙ ˙b ˙n˙ ˙b ˙
˙ ˙n ˙#

I bvi I

˙ ˙b ˙

Figure 2.2: Example of a Chromatic-Neighbor Chord

Though the linear considerations of chromatic harmony sometimes prevail, there are also

situations in chromatic music where the musical context resolves the multiple meaning. In

Figure 2.3, the [vi chord appears again, this time not as a dominant-function harmony in

the original key, but rather as a chromatic (sub)mediant participating in a falling-major-

third progression. Once again, this progression results in diatonic drift, this time wandering

up by a diatonic step, because of the overruling capabilities of Rule 3. In this case, since

the chord can no longer be said to function as a dominant, we cannot justify a non-tertian

spelling of the chord. The rules presented in Table 2.2 thus allow the analyst to make spelling

decisions based on musical context. At the end of this chapter, we shall develop mathematical

functions that give the same results with regard to diatonic spelling and theoretical tuning as

the rules in Table 2.2. These functions, however, must still rely upon certain contingencies

in Table 2.2, such as Rule 3. In Chapter 4 we shall explore further how certain musical

9Other chromatic chords, such as the common-tone diminished-seventh chord, the common-tone German-
sixth chord, and more extravagant conglomerations of chromatic neighbor and passing tones, will strictly
follow the spellings given by the key in which they are functioning.

10Smith (1986) explores similar multiple meanings in chromatic harmony and has influenced this study
considerably.
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contexts can clarify the diatonic spelling, harmonic function, fundamental bass note, or

relative stability of a chord.

&

?

##

##

˙ ˙b ˙ ˙∫˙ ˙b ˙ ˙∫
˙ ˙n ˙b ˙

I bvi bIV ∫II

˙ ˙b ˙b ˙∫

Figure 2.3: Musical Clarification of a Previously Ambiguous Spelling

In Figure 2.4, the III chord from Figure 2.3 appears now with a different function: It

now acts as a secondary dominant. The choice in Rule 2 between a tonicization of vi and a

tonicization of [[vii should ideally follow the method in Rule 4 for establishing the closest

possible relation to the original key. One would thus wish to spell the last two chords in

this progression as V/vi and vi, in contradiction to the music notation in Figure 2.4. Even

in this situation, however, Rule 3 overrides Rule 2 by maintaining the spelling of common

tones. In this case, [6̂ in the second chord cannot be respelled as ]5̂ in the third chord. The

progression here thus drifts upward by a diatonic step during the process of tonicization. As

we shall discover in the next example, common tones may be respelled only in rare cases;

and in such cases, a practical solution usually exists to avoid the concomitant intonation

shift.

&

?

##

##
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Figure 2.4: Example of Common-Tone Retention Forcing Diatonic Drift
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By contrast, Figure 2.5 displays one example where Rule 3 allows common-tone respelling.

Here, the function of the augmented second in the vii◦7 chord as a dissonant interval is

compromised by the passing chord in this diminished-seventh omnibus progression. The

exception in Rule 3 applies only to this circumstance, where at least two common tones are

held between two chords, and the function of the interval between the common tones changes

from a consonance to a chordal dissonance, or vice versa.11 The omnibus progression is

one case where a relatively dissonant sonority—either a dominant-seventh or a diminished-

seventh chord—is prolonged by a relatively consonant sonority—a major or minor triad.

As such, some may embrace a misspelled triad between the two diminished sevenths in

this progression, as the clear dissonance of the non-tertian passing chord would acoustically

confirm its unstable passing function. In scale-based JI, there is no provision to disallow this

reading of the progression. A similar progression, however, where the III chord is achieved by

tonicization before resolving to the vii◦7 – I that ends the present example, would certainly

offer a clearer case for the use of Rule 3 to justify common-tone respelling.
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Figure 2.5: Example of Common-Tone Respelling

The remaining examples that we shall analyze are not concerned with diatonic spelling,

but instead with notable matters of chord tuning.12 Because the pitches of scale-based JI are

tuned according to their harmonic function, the theoretical tuning of a pitch or chord can

reveal its function and thus contribute to making decisions regarding a chord’s fundamental

bass and status within a non-traditional hierarchy of harmonies. The example shown in

11Non-chord tones do not merit enharmonic respelling, though they may occasionally be spelled in
contradiction with the spelling guidelines to allow for stepwise neighbor motion.

12The distinctions we shall be making here will thus not be apparent in the musical notation of the
examples. The differences in theoretical tuning nevertheless emphasize real differences treated by harmonic
function theory.
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Figure 2.6 contains two different tunings of half-diminished seventh chords, justified by their

different tonal functions. First, vii∅7 has dominant function in the original key, and thus

is tuned according to scale degrees 7̂, 2̂, 4̂, and 6̂ of that scale as 15:8, 9:8, 4:3, and 5:3,

respectively. Calculated from these ratios, the intervals between adjacent chord members

are 6:5, 32:27, and 5:4. The second half-diminished chord in the progression is ii∅7, and

follows Rule 4 for its tuning. Rule 4 forbids the use of the seventh in determining the chord

member closest to 1̂ and 5̂ on the line of fifths. The closest scale degree to 1̂ and 5̂ in this

chord, then, is not 1̂ (the seventh), but rather 4̂. In the key of the subdominant, the scale

degrees of the chord, 6̂, 1̂, [3̂, and 5̂, are tuned as 5:3, 1:1, 6:5, and 3:2. (In the original key,

the ratios are 10:9, 4:3, 8:5, and 1:1.) The intervals within the chord are therefore 6:5, 6:5,

and 5:4. This more consonant theoretical tuning of the half-diminished seventh thus serves

its non-dominant function better than the more tense vii∅7 tuning seen in the second chord

of the progression.13 Further, the distinction between the 2̂ in the vii∅7, at 9:8 relative to

tonic, and the 2̂ in the ii∅7, at 10:9 relative to tonic, highlights the two different functions of

that scale degree can assume (dominant and subdominant).14
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Figure 2.6: Two Distinct Tunings of the Half-Diminished Seventh Chord

The final example that we shall discuss, given in Figure 2.7, features two different tunings

of the subtonic triad. The first half of the progression displays one possible harmonization of

the descending-Phrygian-tetrachord bassline. When [VII is used as a diatonic chord in rare

situations like this one, Rule 4 decides its tuning, with its root at 16:9 relative to tonic.15

13The diminished triad will thus also have two distinct tunings depending on its function as a pre-dominant
(ii◦6) or as a dominant (vii◦6).

14This distinction reveals an important theoretical distinction between two instances of the same pitch
class, but little or no practical importance in the approximation of pure tuning in performance situations. In
most cases, performers do not make a conscious distinction between the different species of the whole step.

15This diatonic use of the subtonic is, of course, far more common in certain repertoires such as rock music.
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According to Rule 4, [VII takes its tuning from the scale built on 4̂, and the third and fifth

of the chord are tuned (in the original key) at 10:9 and 4:3, respectively. In other situations

the chord typically functions as a dominant to [III (the relative major). Whenever [VII is

followed by [III, Rule 2 decides the tuning of the chord as 5̂, 7̂, and 2̂ of the scale built on

[III (6:5). The root of this chord lies at 9:5 relative to the original tonic, a syntonic comma

higher than the diatonic [VII chord. Clearly the rest of the chord must also be a syntonic

comma higher, with its third and fifth at 9:8 and 27:10, respectively. A similar situation

obtains when the supertonic chord, which, according to Rule 4, usually lies at 10:9 relative

to tonic, is replaced with a secondary dominant on the same root. The root and fifth of V/V

are a syntonic comma higher than the root and fifth of ii. In situations where ii, through

inflection of its third, becomes V/V, a strict reading of this tuning system would have 2̂ and

6̂ both shift up by a comma. Practical solutions, however, are usually possible that avoid

any pitch shifts in held voices between two chords.
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Figure 2.7: Example of Two Chords Distinguished by a Syntonic Comma

While Figures 2.1, 2.3, and 2.4 demonstrated progressions that exhibit diatonic drift,

there are also progressions that exhibit syntonic drift, or motion away from tonic by a

syntonic comma. Scale-based JI rectifies the syntonic drift of the traditional “comma pump”

I vi ii V I; but it does not correct the drift of non-traditional progressions such as I (1:1) IV

(4:3) [VII (16:9) [V (64:45) [III (32:27) I (80:81), where Rule 3 requires the maintaining of

common tones regardless of syntonic drift. While practically it may be possible to apply a

comma correction in an inconspicuous spot, strict scale-based JI will have to allow syntonic

drift in such a case. The use of non-traditional progressions thus creates inconsistencies in

tonal space which the analyst may choose to highlight if they seem to play a role in the music.
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In Chapter 5 we shall examine how different ways of graphically displaying an analysis in

tonal space can either emphasize or downplay unusual tonal features such as diatonic drift.

Whereas the rules in Table 2.2 are helpful with chromatic harmony, in typical tonal

situations, however, the method can be applied intuitively based on the reference scale.

Table 2.3 summarizes the tonal usage of scale-based JI. The first column of the table gives the

intervals in abbreviated form, where numbers indicate the generic step size of the interval, and

the letters d, m, M, and A symbolize the qualities diminished, minor, major, and augmented,

respectively. The two sets of ordered triples given in the third and fourth columns of the

chart will be discussed in the next section. The “usage” column in Table 2.3 shows examples

of tonal situations in which each of the possible root intervals in scale-based JI occur. This

column gives interval classes (abbreviated ic) for the typical intervals, indicating that, unless

the tonal situation is among the exceptions listed at the bottom of the chart, all members

of the interval class will employ the given ratio, its reciprocal, or either ratio multiplied by

2x (where x is the number of octaves to be added to the simple interval). This chart should

be used only as a quick reference, as it does not offer the kind of comprehensive guidelines

for tuning that Table 2.2 gives. Scale-based JI combines procedures for deciding diatonic

spelling and JI tuning into one comprehensive method. In the next section, we shall begin

to explore this intimate relationship between tuning and diatonic spelling.

Table 2.3: Allowed Root Motion Intervals in 5-limit JI

Interval Ratio 2,3,5 Powers 12,7,3 Steps Usage
Typical:

m2 16/15 ( 4,−1,−1) (1, 1, 0) ic1 (e.g. vii◦ – I, VI – V)
M2 9/8 (−3, 2, 0) (2, 1, 1) ic2 (e.g. IV – V)
m3 6/5 ( 1, 1,−1) (3, 2, 1) ic3 (e.g. vi – IV)
M3 5/4 (−2, 0, 1) (4, 2, 1) ic4
P4 4/3 ( 2,−1, 0) (5, 3, 1) ic5
A4 45/32 (−5, 2, 1) (6, 3, 2) ic6

Atypical:
M2 10/9 ( 1,−2, 1) (2, 1, 0) V – vi or vi – V
m3 32/27 ( 5,−3, 0) (3, 2, 0) ii – vii◦

Only when required by spelling rules:
A1 25/24 (−3,−1, 2) (1, 0, 0) I – vii◦/ii, etc.
d3 256/225 ( 8,−2,−2) (2, 2, 0) Aug.6 – vii◦/V, [II – vii◦

A2 75/64 (−6, 1, 2) (3, 1, 1) vii◦7 – VI, etc.
d4 32/25 ( 5, 0,−2) (4, 3, 1) III+ – vii◦, etc.
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2.2 Diatonic Spelling based on 5-Limit Just Intonation

The previous section provided spelling and tuning strictures for both harmonic and root

motion intervals in 5-limit scale-based JI. The use of the strictures that were given in

Table 2.2 results in the root motions given in Table 2.3. In this chart, two ways of expressing

intervals as ordered triples are introduced. The first expresses the interval in 5-limit JI as

powers of the first three prime numbers (2, 3, and 5).16 For example, the interval 16/15 can

be factorized as 24 · 3−1 · 5−1. The first, second, and third items in the ordered triple always

refer to the powers of 2, 3, and 5, respectively. Therefore one need only write the exponents.

In this case, 16/15 is written as (4,−1,−1). This ordered triple can be thought of as the

number of octaves, fifths, and major thirds that are used to create the interval. As 2, 3,

and 5 are components of the harmonic series (all related to the fundamental), the perfect

fifth represented by the power of 3 is actually an octave and a fifth, and the major third

represented by the power of 5 is two octaves and a third.17 At times it will be convenient to

assume octave equivalence and only show the powers of 3 and 5—i.e. the second and third

members of the ordered triple. We shall call the set of all such ordered triples V2,3,5 and shall

call the set of positive rational numbers with prime limit 5 that the ordered triples of V2,3,5

represent N5.
18

The second ordered-triple notation for an interval is the number of steps the interval

comprises in 12-tone, 7-tone, and 3-tone divisions of the octave. The first component of

the ordered triple therefore gives the transposition in semitones. The second component

indicates how many scale steps are involved in the interval (the T operation in mod-7 space).

It would be logical to conclude that the third component indicates how many consonant

skips along an arpeggio are involved in the interval, but the function of this third number

is actually more complicated than this. I shall discuss the use of the 3-tone component of

the ordered triple in Section 2.4. The first two components of the ordered triple can thus be

translated into standard tonal interval names. To obtain the generic interval size, add one to

the second number of the pair, so that zero will be a unison, one will be a second, two will be

a third, and so on. The quality of the interval—major, minor, augmented, or diminished—is

16Oettingen (1866) is generally credited with the first use of this notation for the representation of intervals
in JI. His preference, however, was to reverse the order, putting the power of 5 first and the power of 2 last.
Klumpenhouwer (2002) provides a concise summary of Oettingen’s notation and its use.

17The term harmonic series is used here to refer to the acoustical overtone pattern above a given
fundamental pitch. The origin of the use of this mathematical term to refer to this acoustical phenomenon
lies in the generation of the overtone pattern from a harmonic sequence of monochord divisions (string-
length fractions 1

1 , 1
2 , 1

3 , 1
4 , 1

5 , . . .). Here the acoustical phenomenon of the harmonic series is represented by
an arithmetic sequence (1, 2, 3, 4, 5, . . . ). The invocation of the harmonic series here is not to support
claims for the acoustical privileging of the triad or any other musical structure. It does, however, form the
acoustical basis for the definition of sensory consonance, as was given in Section 1.3.

18The mathematical relationships among the sets defined here will be formalized in Section 2.3.
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encapsulated in the first number of the pair, but is dependent upon the second number. For

example, an interval of a second that has one semitone is a minor second, two semitones is

a major second, three semitones, an augmented second, and so forth. The first and second

numbers in the ordered triple, then, are related to the mod-12 and mod-7 additive groups,

respectively.19 The mod-12 additive group, of course, is familiar from pitch-class set theory.

A great deal of literature about diatonic scale theory discusses the tonal and mathematical

relationships between 12-step and 7-step scales.20 When the set of all ordered triples of

integers is used to represent the 12-, 7-, and 3-tone representation of intervals, we shall refer

to the set as H12,7,3.

In order to relate these two ordered triples, we shall use them as row vectors.21 The two

3× 3 reciprocal matrices

H =


12 7 3

19 11 5

28 16 7

 and H−1 =


−3 −1 2

7 0 −3

−4 4 −1


can be used to translate between these two interval notations using matrix multiplication.22

Suppose that a and b are row vectors. The matrix multiplication operation aH = b can be

defined as

[ a1 a2 a3 ]


h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

 = [ a1h1,1+a2h2,1+a3h3,1 a1h1,2+a2h2,2+a3h3,2 a1h1,3+a2h2,3+a3h3,3 ].

Given the frequency ratio of an interval in JI, the conversion of the ordered triple using

matrix H gives the correct diatonic spelling of that interval. The reverse is true as well, but

to apply H−1 one must know the third term in the diatonic-spelling row vector. We shall

19While we have been implicitly using octave equivalence so far, the conversion matrices H and H−1 given
here effectively translate any interval between its 5-limit JI representation and the number of half steps and
scale steps in the interval. The relationships among both octave-equivalent and non-octave-equivalent JI and
the diatonic spelling of notes in both pitch and pitch-class space will be made clear in Section 2.3.

20This binomial system of note or interval representation is discussed in more detail by Brinkman
(1986). For more on the interaction of the diatonic and chromatic systems, see Agmon 1996a and Clough,
Engebretsen, and Kochavi 1999.

21My use of row vectors and matrices here is based upon Karp 1984.
22We shall discover the significance of these two matrices and how they are constructed in Section 3.1. It

is important that the two conversion matrices be reciprocal matrices in order for the map between V2,3,5 and
H12,7,3 to be bijective.
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return to this matter in Section 2.4, where we shall define the formula for generating the

3-tone component from the 12- and 7-tone interval sizes.

In scale-based JI, the same rules that decide diatonic spelling also decide tuning. This

is because these spelling strictures derive from tonal function and the theory of JI. Despite

Agmon’s (1989, 1–2) claim “that the whole issue of intonation is for the most part irrelevant

[to diatonic scale theory]”,23 this connection between diatonic spelling and JI is, in my view,

essential to the theory of tonal and diatonic systems. Tuning in 5-limit JI is based on

tonal function. Without tonal function, diatonic spelling is arbitrary.24 Because diatonic

spelling and tuning in JI are both based on tonal function, formal relationships can be

expressed between certain mathematical groups that represent the frequency ratios of JI and

the diatonic spellings of pitches. The next section explores this set of homomorphic groups

that represent JI and the diatonic/chromatic system.

2.3 Homomorphisms Among Scale Systems and Tuning Systems

The previous section informally introduced two systems of representing intervals or

pitches in 5-limit JI. We shall now formally relate the mathematical groups we have been

using informally thus far. Mathematical formalisms are used here to clarify the relationship

between diatonic spelling and JI that was discussed in the previous section. Readers who

are less mathematically inclined may prefer to skip ahead to the concluding paragraphs of

Section 2.4, as all that is practically necessary for successful analytical application of my

theory is the decision-making apparatus given in Table 2.2.25

A pitch or interval in JI will be represented by a positive rational number q, where q is

the frequency ratio of the two pitches in the interval, or the ratio of the pitch in relation to

some other pitch (often the tonic). In section 1.3, the prime limit of the rational number q

was defined as p, where q = a
b

in lowest terms, a and b ∈ Z, and a’s factors and b’s factors

⊂ {primes ≤ p}. Let N3 be the set of all positive rationals q with prime limit 3 (Pythagorean

tuning) and N5 be the set of all positive rationals q with prime limit 5 (syntonic tuning).

When we combine two intervals in JI, represented by two elements of N3 or N5, we use

ordinary multiplication.

23To be fair, Agmon only claims that tuning is not relevant to his own model of the diatonic system, which
forms a useful theory with significant influence on my own work.

24Without tonal function, spelling decisions would most likely be made only from convenience and ease
of reading, rather than from theoretical considerations. Even in the notation of tonal music, ease of reading
sometimes overrides theoretical correctness in diatonic spelling.

25For the less mathematically inclined reader I have included a glossary of mathematical terms and symbols
in Appendix A.
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Theorem 2.3.1 N3 and N5 form commutative groups under the operation of multiplication

q1q2 = q1 · q2.

Proof 2.3.1 The set of rationals Q forms a commutative group under multiplication, and

the set Np of positive rationals with prime limit p is a subgroup of Q. The identity element

is 1, and the inverse of q = a
b

can be defined as q−1 = b
a
. Np thus contains the identity

element of Q under multiplication. Np is closed under multiplication because no two rational

numbers with prime factors ⊂ {P ≤ p} can ever form a rational number with any prime

factor /∈ {P ≤ p}. Np clearly displays closure under under inverses because 1
n

draws upon

the same prime factors as n. (The reciprocal 1
n

simply reverses the sign of the exponents on

the prime factors of n.) �

Figure 2.8 shows the relationships among N5, N3, and several other groups. The two other

groups that are horizontally aligned with N5 in the diagram are the two row vector notations

for intervals in 5-limit JI, V2,3,5 and H12,7,3. Likewise, V2,3 and H12,7 are notations for 3-limit

JI. Members of V2,3,5 contain the powers of 2, 3, and 5 in the prime factorization of the ratio,

and members of H12,7,3 contain the number of 12-, 7-, and 3-tone scale steps that make up

the interval. Thus, groups V2,3,5 and H12,7,3 both can be defined as the set of ordered triples

(a, b, c), where a ∈ Z, b ∈ Z, and c ∈ Z. Similarly, the groups V2,3 and H12,7 can be defined

as the set of ordered pairs (a, b), where a ∈ Z, and b ∈ Z.

Theorem 2.3.2 V2,3,5, H12,7,3, V2,3, and H12,7 are all groups under the operation of com-

ponentwise addition (a, b, c)(d, e, f) = (a + d, b + e, c + f). Moreover, V2,3 and H12,7 are

subgroups of V2,3,5 and H12,7,3, respectively.

Proof 2.3.2 The set of integers Z forms a commutative group under addition. Because the

set of possible values in each component of the ordered pair or triple is Z, each component

is a group. It follows that V2,3,5 and H12,7,3 are commutative groups under componentwise

addition with identity (0, 0, 0); and the inverse of (a, b, c) in either group is (−a,−b,−c). It

also follows that the subgroups V2,3, and H12,7 both have identity (0, 0); and the inverse of

(a, b) in either of the subgroups is (−a,−b). Note that V2,3 and H12,7 behave like V2,3,5 and

H12,7,3 (respectively) where the third component of the ordered triple is always 0. As 0 is

the identity element of Z under addition, V2,3 and H12,7 are thus closed under addition and

under inverses. �

In the previous section, I introduced the two matrices
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H =


12 7 3

19 11 5

28 16 7

 and H−1 =


−3 −1 2

7 0 −3

−4 4 −1

 .

The operation of multiplying the row vector by the matrix H will serve as the map h between

the two groups (h : V2,3,5 → H12,7,3). That is, for the ordered triples a ∈ V2,3,5 and b ∈ H12,7,3,

b = h(a) = a ·H and a = h−1(b) = b ·H−1. The double-headed arrows between the groups

that are aligned on the same row of Figure 2.8 indicate that the groups are isomorphic—that

is, all three groups encapsulate the same information about the musical relationships between

pitches, though in somewhat different ways. The map v5 : N5 → V2,3,5 can be defined for

q ∈ N5 and (a, b, c) ∈ V2,3,5 by factorizing q such that q = 2a · 3b · 5c. Likewise, v3 : N3 → V2,3

maps q ∈ N3 to (a, b) ∈ V2,3 with the formula q = 2a ·3b. Clearly these are bijective functions.

Two 2× 2 matrices

H3 =

 12 7

19 11

 and H−1
3 =

 −11 7

19 −12


will serve as the map h3 : V2,3 → H12,7 and its inverse. That is, for the ordered pairs

c ∈ V2,3 and d ∈ H12,7, d = h3(c) = cH3 and c = h−1
3 (d) = dH−1

3 . In order to map any

value in N5 (5-limit JI) to its corresponding value in N3 (Pythagorean tuning), we can define

π : N5 → N3 such that, for q = 2a · 3b · 5c ∈ N5, π(q) = 2a−4c · 3b+4c. Note that this is a

surjective relation—that is, many elements in N5 map to a single element in N3. The map

ρ : V5 → V3 follows from π. Specifically, for (a, b, c) ∈ V5, ρ(a, b, c) = (a − 4c, b + 4c). The

map σ : H12,7,3 → H12,7 is by far the simplest: For (d, e, f) ∈ H12,7, σ(d, e, f) = (d, e).

As Figure 2.8 shows, all of the mappings just defined will remain the same in octave-

reduced pitch-class space, which is represented by the groups O5, W2,3,5, I12,7,3, O3, W2,3,

and I12,7. Let O5 be the set of positive rationals greater than or equal to 1 and less than 2

with prime limit 5. Likewise, let O3 be the set of positive rationals greater than or equal to

1 and less than 2 with prime limit 3.

Theorem 2.3.3 O3 and O5 form commutative groups under the operation q1q2 = q1 · q2 ·
2−blog2(q1·q2)c. As such, they share the properties of (1) closure, (2) associativity, (3) identity,

(4) inverse, and (5) commutativity.

Proof 2.3.3 For a and b ∈ O3 or O5, both 1 ≤ a < 2 and 1 ≤ b < 2.
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(1) If the set is closed, then (a) a · b · 2−blog2(a·b)c ∈ Q, and (b) 1 ≤ a · b · 2−blog2(a·b)c < 2.

(a) By definition, bxc ∈ Z for all x. Thus, −blog2(a · b)c ∈ Z. Because 2bxc ∈ Z for

all x ≥ 0, and 2bxc ∈ Q for all x < 0 (actually, for all x), we can thus assert that

a · b · 2−blog2(a·b)c ∈ Q, as desired.

(b) If 1 ≤ a < 2 and 1 ≤ b < 2, then 1 ≤ a · b < 4.

For all (a · b) < 2, 0 ≤ log2(a · b) < 1, −blog2(a · b)c = 0, and 2−blog2(a·b)c = 1.

For all (a · b) ≥ 2, 1 ≤ log2(a · b) < 2, −blog2(a · b)c = −1, and 2−blog2(a·b)c = 1
2
.

Therefore, for all (a · b) ∈ O5, 1 ≤ a · b · 2−blog2(a·b)c < 2, as desired.

(2) The operation ab = a·b·2−blog2(a·b)c is associative if, for all a, b, and c ∈ O5, (ab)c = a(bc).

(ab)c = a(bc)

(a · b · 2−blog2(a·b)c) · c · 2−blog2((a·b·2−blog2(a·b)c)·c)c = a · (b · c · 2−blog2(b·c)c) · 2−blog2(a·(b·c·2−blog2(b·c)c))c

2−blog2(a·b)c · 2−blog2((a·b·2−blog2(a·b)c)·c)c = 2−blog2(b·c)c · 2−blog2(a·(b·c·2−blog2(b·c)c))c

2−blog2(a·b)c−blog2((a·b·2−blog2(a·b)c)·c)c = 2−blog2(b·c)c−blog2(a·(b·c·2−blog2(b·c)c))c

2−blog2(a·b)c−blog2(a·b·c)+log2(2−blog2(a·b)c)c = 2−blog2(b·c)c−blog2(a·b·c)+log2(2−blog2(b·c)c)c

2−blog2(a·b)c−blog2(a·b·c)−blog2(a·b)cc = 2−blog2(b·c)c−blog2(a·b·c)−blog2(b·c)cc

2−blog2(a·b)c−blog2(a·b·c)c−blog2(a·b)c = 2−blog2(b·c)c−blog2(a·b·c)c−blog2(b·c)c

2−blog2(a·b·c)c = 2−blog2(a·b·c)c

(3) The identity element is 1.

(4) The inverse of q ∈ O5, where q = a
b

can be defined as q−1 = b
a
· 2−blog2( b

a
)c.

(5) If the operation ab is commutative, then a · b · 2−blog2(a·b)c = b ·a · 2−blog2(b·a)c. This is true

because of the commutative property of multiplication itself: a · b = b · a. �

Let W2,3,5 be the set of ordered triples (a, b, c), where a ∈ Z, b ∈ Z, and c ∈ Z, and where

a = −blog2(3
b · 5c)c. Similarly, the group W2,3 can be defined as the set of ordered pairs

(a, b), where a ∈ Z, and b ∈ Z, and where a = −blog2(3
b)c. As W2,3 behaves like the ordered

triple W2,3,5 where the third component is always 0, we need not provide separate proof of

its behaviors.
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Theorem 2.3.4 The set W2,3,5 forms a commutative group under the operation

(a, b, c)(d, e, f) = (−blog2(3
b+e · 5c+f )c, b + e, c + f).

Proof 2.3.4

(1) If the group is closed, the operation (a, b, c)(d, e, f) must yield another element of

the set. First, the group product (−blog2(3
b+e · 5c+f )c, b + e, c + f) must satisfy

−blog2(3
b+e · 5c+f )c ∈ Z, b + e ∈ Z, and c + f ∈ Z. Because −bxc ∈ Z for all x,

and because Z is closed under addition, this condition is satisfied. In the definition of

the set, the first component in the ordered triple is always defined in terms of the second

and third components. It is clear that the group operation is designed to maintain this

relationship.

(2) The group operation inherits associativity from ordinary addition of integers.

(3) The identity element is (0, 0, 0).

(4) The inverse of (a, b, c) ∈ W2,3,5 is (−blog2(3
−b · 5−c)c,−b,−c).

(5) The group operation inherits commutativity from ordinary addition of integers. �

Let I12,7,3 be the set of ordered triples (a, b, c), where a ∈ Z12, b ∈ Z, and c ∈ Z. The group

Z12 is familiar to music theorists as the mod-12 additive group of pitch-class set theory. Let

us define the group I12,7 in a similar fashion as the set of ordered pairs (a, b), where a ∈ Z12,

and b ∈ Z. As we observed with W2,3,5 and W2,3, I12,7 behaves like the ordered triple I12,7,3

where the third component is always 0.

Theorem 2.3.5 The set I12,7,3 forms a commutative group under the operation

(a, b, c)(d, e, f) = ((a + d) mod 12, b + e, d + f).

Proof 2.3.5 As Z12 is a commutative group under addition modulo 12, and Z is a

commutative group under addition, it follows that I12,7,3 is also a commutative group. The

identity element is (0, 0, 0), and the inverse of (a, b, c) ∈ I12,7,3 is ((11 · a) mod 12,−b,−c). �

While the first component of the groups I12,7,3 and I12,7 alone constitutes a finite set, the

groups themselves do not have a finite number of elements. This is because there is an infinite

number of possible diatonic spellings of any of the twelve pitch classes and, in 5-limit JI, an
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infinite number of syntonic-comma-shifted instances of each of these diatonic spellings. The

groups O5, W2,3,5, and I12,7,3 are thus isomorphic to the Tonnetz, or 5-limit tuning lattice,

which will be discussed in Chapter 3. The maps between pitch space and pitch-class space

can be defined as follows. First, o, which maps N5 → O5 and N3 → O3, is defined for all

q ∈ N5 or N3 as o(q) = q · 2−blog2(q)c. In addition, the map w : V5 → W5 is defined for all

(a, b, c) ∈ V5 as w(a, b, c) = (−blog2(3
b · 5c)c, b, c). Finally, i : H12,7,3 → I12,7,3 is the map

defined for (d, e, f) ∈ H12,7,3 as i(d, e, f) = (d mod 12, e− 7 ·
⌊

d
12

⌋
, f − 3 ·

⌊
d
12

⌋
).

Figure 2.9 shows the relationships among the 3-limit groups we have just defined and the

syntonic-comma-restricted 5-limit groups from which the scale in Table 2.1 is drawn. As we

have just seen, there is an infinite number of instances of any single spelling of a pitch in the

5-limit groups in Figure 2.8, all separated by the syntonic comma. In Figure 2.9, however,

there is only one instance of any spelling of a pitch. Because 3-limit tuning also contains

only a single instance of each spelling of a pitch, these 5-limit groups, D5, L2,3,5, X12,7,3, E5,

M2,3,5, and Y12,7,3, are isomorphic to the already-defined 3-limit groups with which they are

vertically aligned in the figure. (Note the double-headed vertical arrows in Figure 2.9.) Let

D5 be the set of positive rationals with prime limit 5 q = 2a · 3b · 5c satisfying the condition

that b−2 ≤ c ≤ b+2. If q and r ∈ D5, where q = 2a ·3b ·5c and r = 2d ·3e ·5f , we can define

qr = 2a−4·c+d−4·f+4·b b+4·c+e+4·f
5 e · 3b+4·c+e+4·f−4·b b+4·c+e+4·f

5 e · 5b
b+4·c+e+4·f

5 e

as an operation on this set.26

Theorem 2.3.6 D5 forms a commutative group. As such, it has the properties of (1) closure,

(2) associativity, (3) identity, (4) inverse, and (5) commutativity.

Proof 2.3.6

(1) To show that the set is closed, we must confirm that, for q and r ∈ D5, qr = 2a · 3b · 5c

is a positive rational number with prime limit 5, and that b− 2 ≤ c ≤ b + 2. First, for

all a, b, c, d, e, and f ∈ Z,

2a−4·c+d−4·f+4·b b+4·c+e+4·f
5 e · 3b+4·c+e+4·f−4·b b+4·c+e+4·f

5 e · 5b
b+4·c+e+4·f

5 e

is, by definition, a positive rational number with prime limit 5. Also,

26See the entry on rounding in Appendix A for the rounding conventions to be used in this dissertation.
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b+4·c+e+4·f−4·b b+4·c+e+4·f
5 e−2 ≤ b b+4·c+e+4·f

5 e ≤ b+4·c+e+4·f−4·b b+4·c+e+4·f
5 e+2,

because, if m = b + 4 · c + e + 4 · f , then

m− 4 ·
⌊m

5

⌉
− 2 ≤

⌊m

5

⌉
≤ m− 4 ·

⌊m

5

⌉
+ 2.

An equivalent statement is

⌊m

5

⌉
− 2 ≤ m− 4

⌊m

5

⌉
≤

⌊m

5

⌉
+ 2.

We can assert that m has 5 distinct integral values for which
⌊

m
5

⌉
has a single integral

value. More specifically, for a single value of
⌊

m
5

⌉
, m can only be

(5
⌊m

5

⌉
− 2),

(5
⌊m

5

⌉
− 1),

(5
⌊m

5

⌉
),

(5
⌊m

5

⌉
+ 1), or

(5
⌊m

5

⌉
+ 2).

Substituting each of these values for m in the expression m− 4
⌊

m
5

⌉
,

(5
⌊m

5

⌉
− 2)− 4

⌊m

5

⌉
=

⌊m

5

⌉
− 2

(5
⌊m

5

⌉
− 1)− 4

⌊m

5

⌉
=

⌊m

5

⌉
− 1

(5
⌊m

5

⌉
)− 4

⌊m

5

⌉
=

⌊m

5

⌉
(5

⌊m

5

⌉
+ 1)− 4

⌊m

5

⌉
=

⌊m

5

⌉
+ 1

(5
⌊m

5

⌉
+ 2)− 4

⌊m

5

⌉
=

⌊m

5

⌉
+ 2.

Therefore, ⌊m

5

⌉
− 2 ≤ m− 4

⌊m

5

⌉
≤

⌊m

5

⌉
+ 2,

as desired.
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(2) The operation qr = 2a−4·c+d−4·f+4·b b+4·c+e+4·f
5 e · 3b+4·c+e+4·f−4·b b+4·c+e+4·f

5 e · 5b
b+4·c+e+4·f

5 e is

associative if, for all q = 2a · 3b · 5c, r = 2d · 3e · 5f , and s = 2g · 3h · 5i ∈ D5, we can

show that (qr)s = q(rs).

(qr)s =

2a−4c+d−4f+4b b+4c+e+4f
5 e−4b b+4c+e+4f

5 e+g−4i+4b b+4c+e+4f+h+4i
5 e ·

3b+4c+e+4f−4b b+4c+e+4f
5 e+4b b+4c+e+4f

5 e+h+4i−4b b+4c+e+4f+h+4i
5 e ·

5b
b+4c+e+4f+h+4i

5 e =

2a−4c+d−4f+g−4i+4b b+4c+e+4f+h+4i
5 e · 3b+4c+e+4f+h+4i−4b b+4c+e+4f+h+4i

5 e · 5b
b+4c+e+4f+h+4i

5 e

q(rs) =

2a−4c+d−4f+g−4i+4b e+4f+h+4i
5 e−4b e+4f+h+4i

5 e+4b b+4c+e+4f+h+4i
5 e ·

3b+4c+e+4f+h−4i−4b e+4f+h+4i
5 e+4b e+4f+h+4i

5 e−4b b+4c+e+4f+h+4i
5 e ·

5b
b+4c+e+4f+h+4i

5 e =

2a−4c+d−4f+g−4i+4b b+4c+e+4f+h+4i
5 e · 3b+4c+e+4f+h+4i−4b b+4c+e+4f+h+4i

5 e · 5b
b+4c+e+4f+h+4i

5 e

(3) The identity element is 1.

(4) The inverse of q ∈ D5, where q = a
b

can be defined as q−1 = b
a
.

(5) The operation qr inherits commutativity from conventional addition of integers. �

Let E5 be the set of positive rationals with prime limit 5 q = 2a · 3b · 5c where 1 ≤ q < 2

and where b− 2 ≤ c ≤ b + 2. For the set E5 and for q and r ∈ E5, where q = 2a · 3b · 5c and

r = 2d · 3e · 5f , we can define the operation

qr = 2−blog2(3
b+4·c+e+4·f−4·b b+4·c+e+4·f

5 e·5b
b+4·c+e+4·f

5 e)c · 3b+4·c+e+4·f−4·b b+4·c+e+4·f
5 e · 5b

b+4·c+e+4·f
5 e.

Theorem 2.3.7 E5 forms a commutative group. As such, it has the properties of (1) closure,

(2) associativity, (3) identity, (4) inverse, and (5) commutativity.
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Proof 2.3.7

(1) The set is closed because of three properties. First, for all a, b, c, d, e, and f ∈ Z,

2−blog2(3
b+4·c+e+4·f−4·b b+4·c+e+4·f

5 e·5b
b+4·c+e+4·f

5 e)c · 3b+4·c+e+4·f−4·b b+4·c+e+4·f
5 e · 5b

b+4·c+e+4·f
5 e

is by definition a positive rational number with prime limit 5. Next, for q and r ∈ D5

where qr = 2a · 3b · 5c, proof 2.3.6 confirms in this case as well that b− 2 ≤ c ≤ b + 2.

Finally, by definition, when

2−blog2(3
b+4·c+e+4·f−4·b b+4·c+e+4·f

5 e·5b
b+4·c+e+4·f

5 e)c,

is multiplied by any value of

3b+4·c+e+4·f−4·b b+4·c+e+4·f
5 e · 5b

b+4·c+e+4·f
5 e,

it gives a value qr such that 1 ≤ qr < 2.

(2) The operation qr is associative if, for all q = 2a·3b·5c, r = 2d·3e·5f , and s = 2g·3h·5i ∈ D5,

we can show that (qr)s = q(rs). Proofs 2.3.6 and 2.3.3 confirm this assertion.

(3) The identity element is 1.

(4) The inverse of q ∈ D5, where q = 2a·3b·5c can be defined as q−1 = 2−blog2(3−b·5−c)c·3−b·5−c.

(5) The operation qr inherits commutativity from conventional addition of integers. �

Let L2,3,5 be the set of ordered triples (a, b, c) where a, b, and c ∈ Z and where b−2 ≤ c ≤ b+2.

Theorem 2.3.8 L2,3,5 forms a commutative group under the operation

(a,b,c)(d,e,f)=(a−4·c+d−4·f+4·b b+4·c+e+4·f
5 e, b+4·c+e+4·f−4·b b+4·c+e+4·f

5 e, b b+4·c+e+4·f
5 e).

Proof 2.3.8

(1) To show that the set is closed, we must confirm that the product of two elements has two

properties. First, (a, b, c)(d, e, f) must also be in the set of ordered triples of integers.
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This is clearly inherited from the closure property of conventional addition of integers.

Second, we must show that, if (a, b, c)(d, e, f) = (g, h, i), then h − 2 ≤ i ≤ h + 2.

Proving that i−2 ≤ h ≤ i+2 would be equivalent. Let the integer m = b+4c+e+4f .

Rewriting i− 2 ≤ h ≤ i + 2 in terms of m, we thus wish to establish that

⌊m

5

⌉
− 2 ≤ m− 4

⌊m

5

⌉
≤

⌊m

5

⌉
+ 2.

We can assert that m has 5 distinct integral values for which
⌊

m
5

⌉
has a single integral

value. More specifically, for a single value of
⌊

m
5

⌉
, m can only be

(5
⌊m

5

⌉
− 2),

(5
⌊m

5

⌉
− 1),

(5
⌊m

5

⌉
),

(5
⌊m

5

⌉
+ 1), or

(5
⌊m

5

⌉
+ 2).

Substituting each of these values for m in the expression m− 4
⌊

m
5

⌉
,

(5
⌊m

5

⌉
− 2)− 4

⌊m

5

⌉
=

⌊m

5

⌉
− 2

(5
⌊m

5

⌉
− 1)− 4

⌊m

5

⌉
=

⌊m

5

⌉
− 1

(5
⌊m

5

⌉
)− 4

⌊m

5

⌉
=

⌊m

5

⌉
(5

⌊m

5

⌉
+ 1)− 4

⌊m

5

⌉
=

⌊m

5

⌉
+ 1

(5
⌊m

5

⌉
+ 2)− 4

⌊m

5

⌉
=

⌊m

5

⌉
+ 2.

Therefore, ⌊m

5

⌉
− 2 ≤ m− 4

⌊m

5

⌉
≤

⌊m

5

⌉
+ 2,

as desired.

(2) The set operation is associative if, for (a, b, c), (d, e, f), and (g, h, i) ∈ L2,3,5, we can

show that ((a, b, c)(d, e, f))(g, h, i) = (a, b, c)((d, e, f)(g, h, i)).
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((a, b, c)(d, e, f))(g, h, i) =(
a− 4c + d− 4f + 4

⌊
b+4c+e+4f

5

⌉
− 4

⌊
b+4c+e+4f

5

⌉
+ g − 4i + 4

⌊
b+4c+e+4f+h+4i

5

⌉
,

b + 4c + e + 4f − 4
⌊

b+4c+e+4f
5

⌉
+ 4

⌊
b+4c+e+4f

5

⌉
+ h + 4i− 4

⌊
b+4c+e+4f+h+4i

5

⌉
,⌊

b+4c+e+4f+h+4i
5

⌉ )
=(

a− 4c + d− 4f + g − 4i + 4
⌊

b+4c+e+4f+h+4i
5

⌉
,

b + 4c + e + 4f + h + 4i− 4
⌊

b+4c+e+4f+h+4i
5

⌉
,⌊

b+4c+e+4f+h+4i
5

⌉ )
(a, b, c)((d, e, f)(g, h, i)) =(
a− 4c + d− 4f + g − 4i + 4

⌊
e+4f+h+4i

5

⌉
− 4

⌊
e+4f+h+4i

5

⌉
+ 4

⌊
b+4c+e+4f+h+4i

5

⌉
,

b + 4c + e + 4f + h− 4i− 4
⌊

e+4f+h+4i
5

⌉
+ 4

⌊
e+4f+h+4i

5

⌉
− 4

⌊
b+4c+e+4f+h+4i

5

⌉
,⌊

b+4c+e+4f+h+4i
5

⌉ )
=(

a− 4c + d− 4f + g − 4i + 4
⌊

b+4c+e+4f+h+4i
5

⌉
,

b + 4c + e + 4f + h + 4i− 4
⌊

b+4c+e+4f+h+4i
5

⌉
,⌊

b+4c+e+4f+h+4i
5

⌉ )

(3) The identity element is (0, 0, 0).

(4) The inverse of (a, b, c) ∈ L2,3,5 is (−a,−b,−c).

(5) The operation (a, b, c)(d, e, f) inherits commuativity from conventional addition of

integers. �

Let M2,3,5 be the set of ordered triples (a, b, c) where a, b, and c ∈ Z, where a =

−blog2(3
b · 5c)c, and where b− 2 ≤ c ≤ b + 2.
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Theorem 2.3.9 The set M2,3,5 forms a commutative group under the operation

(a, b, c)(d, e, f) =
(
−

⌊
log2(3

b+4·c+e+4·f−4·b b+4·c+e+4·f
5 e · 5b

b+4·c+e+4·f
5 e)

⌋
,

b + 4 · c + e + 4 · f − 4 ·
⌊

b + 4 · c + e + 4 · f
5

⌉
,⌊

b + 4 · c + e + 4 · f
5

⌉ )
.

Proof 2.3.9

(1) Proofs 2.3.4 and 2.3.8 can be reapplied here to show that this set is closed under the

operation (a, b, c)(d, e, f).

(2) Proofs 2.3.4 and 2.3.8 confirm that the operation is associative on the set.

(3) The identity element is (0, 0, 0).

(4) The inverse of (a, b, c) ∈ M2,3,5 is (−blog2(3
−b · 5−c)c,−b,−c).

(5) The set operation inherits commutativity from conventional addition of integers. �

Let X12,7,3 be the set of ordered triples (a, b, c) where a, b, and c ∈ Z and where

c = (3 · (−11 · a + 19 · b) + 5 · (7 · a− 12 · b))−
⌊

7·a−12·b
5

⌉
.

Theorem 2.3.10 The set X12,7,3 forms a commutative group under the operation

(a, b, c)(d, e, f) =
(
a + d, b + e, (3 · (−11 · (a + d) + 19 · (b + e)) +

5 · (7 · (a + d)− 12 · (b + e)))−
⌊

7 · (a + d)− 12 · (b + e)

5

⌉ )
.

Proof 2.3.10

(1) Closure is inherited from conventional addition of integers.

(2) Associativity is inherited from conventional addition of integers.

(3) The identity element is (0, 0, 0).

(4) The inverse of (a, b, c) ∈ M2,3,5 is

(
−a,−b, (3 ·(−11 ·(−a)+19 ·(−b))+5 ·(7 ·(−a)−12 ·(−b)))−

⌊
7 · (−a)− 12 · (−b)

5

⌉ )
.
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(5) The set operation inherits commutativity from conventional addition of integers. �

Y12,7,3 can be defined as the set of ordered triples (a, b, c) where a ∈ Z12, where b and c ∈ Z,

and where c = (3 · (−11 · a + 19 · b) + 5 · (7 · a− 12 · b))−
⌊

7·a−12·b
5

⌉
.

Theorem 2.3.11 The set Y12,7,3 forms a commutative group under the operation

(a, b, c)(d, e, f) =
(
(a + d) mod 12, b + e, (3 · (−11 · (a + d) + 19 · (b + e)) +

5 · (7 · (a + d)− 12 · (b + e)))−
⌊

7 · (a + d)− 12 · (b + e)

5

⌉ )
.

Proof 2.3.11

(1) Closure is inherited from conventional addition of integers and addition mod 12 over

Z12.

(2) Associativity is inherited from conventional addition of integers and addition mod 12.

(3) The identity element is (0, 0, 0).

(4) The inverse of (a, b, c) ∈ M2,3,5 is

(
12−a,−b, (3(−11(12−a)+19(−b))+5(7(12−a)−12(−b)))−

⌊
7(12− a)− 12(−b)

5

⌉ )
.

(5) The set operation inherits commutativity from conventional addition of integers and

addition mod 12. �

The map δ : N3 → D5 and O3 → E5 is defined for q ∈ N3 or q ∈ O3, where q = 2a · 3b, as

δ(q) = q · (80
81

)b
b
5e. The map µ : V2,3 → L2,3,5 and W2,3 → M2,3,5 is defined for (a, b) ∈ V2,3

or (a, b) ∈ W2,3 as (a + 4 ·
⌊

b
5

⌉
, b − 4 ·

⌊
b
5

⌉
,
⌊

b
5

⌉
). Lastly, the map y : H12,7 → X12,7,3 and

I12,7 → Y12,7,3 is defined for (d, e) ∈ H12,7 or (d, e) ∈ I12,7 as

y(d, e) =

(
d, e, (3 · (−11 · d + 19 · e) + 5 · (7 · d− 12 · e))−

⌊
7 · d− 12 · e

5

⌉)
.

Since this map takes any interval or pitch and its diatonic spelling and returns the

corresponding value in the set from which scale-based JI derives its scale, the next section

will discuss the mathematical derivation of the ratios in scale-based JI.
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Figure 2.8: Homomorphisms among 5-Limit and 3-Limit JI and 12-, 7-, and 3-Tone Scales
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Figure 2.9: Isomorphism between the 12-Tone/7-Tone System and the 5-Limit Scale
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2.4 Generalizing Diatonic Structures into 5-Limit JI

The previous section provided a mathematical definition of the groups of JI and diatonic

spelling. Further, we examined a restricted 5-limit system isomorphic to Pythagorean tuning

(3-limit JI). This 5-limit system offers purely tuned triads without creating an infinite

number of pitch replications distinguished by the syntonic comma.27 The repertoire of scale

degrees given in Table 2.1 for use in scale-based JI is drawn from the octave-reduced instance

of this system (E5). In the following section we shall formally define this 12-member subset

of O5 (octave-reduced 5-limit JI) and E5 (octave-reduced syntonic-comma-restricted 5-limit

JI) that was first given in Table 2.1. The formalization of the 5-limit scale here offers a

mathematical procedure for spelling and tuning any tonal piece of music given only the 12-

tone pitch or pitch-class integers, the key of the piece, and the tonicizations and modulations

involved. Figure 2.10 displays the isomorphic groups involved and the maps between them.

The set of integers Z forms a group under the operation of addition. Its identity element is

0, and the inverse of a ∈ Z is −a. We shall use this set to measure ordered pitch intervals

with 12 steps per octave. The octave-reduced set Z12 forms a group under the operation of

addition modulo 12. Its identity element is 0, and the inverse of a ∈ Z12 may be derived

from either 12− a or (11 · a) mod 12.

As we discovered in the previous section, the diatonic spelling of pitches or intervals is

adequate for representing 3-limit JI (Pythagorean tuning). The sets B12,7, P2,3, F3, C12,7,

Q2,3, and G3 thus all form a Pythagorean system based on the scale-degree spellings in

Table 2.1. As we shall see, the octave-reduced groups C12,7, Q2,3 and G3 follow quite

naturally from B12,7, P2,3 and F3. The sets B12,7 and C12,7 represent the spelling of the

intervals represented by Z. First, B12,7 is defined as the set of ordered pairs (a, b) where

both a and b ∈ Z and b is always 7·a−(((7·a+5) mod 12)−5)
12

. Similarly, C12,7 is defined as the set

of ordered pairs (a, b) where a ∈ Z12 and b ∈ Z7 and b is always 7·a−(((7·a+5) mod 12)−5)
12

.

Theorem 2.4.1 The set B12,7 forms a commutative group under the operation

(a, b)(c, d) =
(
a + c,

7 · (a + c)− (((7 · (a + c) + 5) mod 12)− 5)

12

)
,

and the set C12,7 forms a commutative group under the operation

(a, b)(c, d) =
(
a + c, ((((7 · (a + c mod 12) + 5) mod 12)− 5) · 4) mod 7

)
.

27Because not every triad is just in this system, we must make use of pitches outside the system in the
manner that we discussed in Section 2.1.
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Proof 2.4.1

(1) Closure is inherited from conventional addition of integers, addition mod 12 over Z12,

and addition mod 7 over Z7.

(2) Associativity is inherited from conventional addition of integers, addition mod 12, and

addition mod 7.

(3) The identity element of both sets is (0, 0).

(4) The inverse of (a, b) ∈ B12,7 is (−a, −7·a−(((−7·a+5) mod 12)−5)
12

, and the inverse of (a, b) ∈
C12,7 is (12− a, ((((7 · ((12− a) mod 12) + 5) mod 12)− 5) · 4) mod 7).

(5) The set operations inherit commutativity from conventional addition of integers, addi-

tion mod 12, and addition mod 7. �

Comparison of Figure 2.10 with Figure 2.8 and Figure 2.9 suggests that P2,3 and Q2,3 use

ordered pairs to represent the powers of 2 and 3 in the 3-limit frequency ratios that correspond

with the spellings in Table 2.1. Let P2,3 be the set of ordered pairs (a, b) where a ∈ Z and

b is a member of the set of integers mod 12 − 5; that is, b is always an integer such that

−5 ≤ b < 7. The set Q2,3 is defined as the set of ordered pairs (a, b) where a ∈ Z, b is a

member of the set of integers mod 12 − 5, and a is always −blog2(3
b)c.

Theorem 2.4.2 The set P2,3 forms a commutative group under the operation

(a, b)(c, d) =
(
a + c, ((b + d + 5) mod 12)− 5

)
,

and the set Q2,3 forms a commutative group under the operation

(a, b)(c, d) =
(
− blog2(3

((b+d+5) mod 12)−5)c, ((b + d + 5) mod 12)− 5
)
.

Proof 2.4.2

(1) Closure is inherited from conventional addition of integers, from addition mod 12, and,

in the case of Q2,3, from W2,3.

(2) Associativity is inherited from conventional addition of integers, from addition mod 12,

and, in the case of Q2,3, from W2,3.

(3) The identity element of both sets is (0, 0).
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(4) The inverse of (a, b) ∈ P2,3 is (−a, ((17− b) mod 12)−5); and the inverse of (a, b) ∈ Q2,3

is (−blog2(3
((17−b) mod 12)−5)c, ((17− b) mod 12)− 5).

(5) The set operations inherit commutativity from conventional addition of integers, from

addition mod 12, and, in the case of Q2,3, from W2,3. �

The 3-limit frequency ratios represented by the row vectors in P2,3 form the elements of

F3. We shall define F3 as the set of positive rational numbers q with prime limit 3 where

q = 2a · 3b, where a ∈ Z, and where b is a member of the set of integers mod 12 − 5. This

set clearly has the same relationship to P2,3 as N3 has to V2,3. Likewise, G3 is defined as the

set of positive rationals with prime limit 3 q = 2a · 3b such that a is always a = −blog2(3
b)c.

Theorem 2.4.3 Given q = 2a·3b, and r = 2d·3e (both ∈ F3), the set F3 forms a commutative

group under the operation

qr = 2a+d · 3((b+e+5) mod 12)−5.

Given q and r ∈ G3, the set G3 also forms a commutative group under the operation

qr = 2−blog2(3((b+e+5) mod 12)−5)c · 3((b+e+5) mod 12)−5.

Proof 2.4.3

(1) Several conditions must obtain for us to be able to assert closure. First, the result of

the operation qr must be a positive 3-limit rational number. Clearly this is the case

for both F3 and G3. We must also be able to confirm that the result s = 2g · 3h of the

operation qr satisfies the condition h ∈ {Z12−5}. In the operations on both F3 and G3

this is clearly true because h = ((b+e+5) mod 12)−5 in both operations qr. Further,

in the operation qr = s on the set F3, g must be an integer. This is true because of

the closure property of addition over Z. Finally, in the operation qr = s on the set G3,

g must be −blog2(3
h)c. This is clearly true, as g = −blog2(3

((b+e+5) mod 12)−5)c.

(2) Associativity is inherited from from addition mod 12, conventional addition of integers

in the case of F3, and, in the case of G3, from O3.

(3) The identity element of both sets is 1.

(4) The inverse of q = 2a ·3b ∈ F3 is 2−a ·3((17−b) mod 12)−5; and the inverse of q = 2a ·3b ∈ G3

is 2−blog2(3((17−b) mod 12)−5)c · 3((17−b) mod 12)−5.

(5) The set operations inherit commuatativity from addition mod 12, conventional addition

of integers in the case of F3, and, in the case of G3, from O3. �
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Of course the ratios that accompany the diatonic spellings in Table 2.1 are not 3-limit

ratios, but rather 5-limit ratios. The groups J12,7,3, K12,7,3, Z2,3,5, A2,3,5, R5, and S5 thus all

encode (in different ways) the structural relationships of the set of 5-limit ratios found in

Table 2.1. J12,7,3 is defined as the set of ordered triples (a, b, c) such that a, b, and c ∈ Z, b

is always
7 · a− (((7 · a + 5) mod 12)− 5)

12
,

and c is always

(3 · (−11 · a + 19 · b) + 5 · (7 · a− 12 · b))−
⌊

7 · a− 12 · b
5

⌉
.

K12,7,3 is defined as the set of ordered triples (a, b, c) where a ∈ Z12, b ∈ Z7, and c ∈ Z.

Further, b is always
7 · a− (((7 · a + 5) mod 12)− 5)

12
,

and c is always

(3 · (−11 · a + 19 · b) + 5 · (7 · a− 12 · b))−
⌊

7 · a− 12 · b
5

⌉
.

Theorem 2.4.4 Given

j =
7 · (a + d)− (((7 · (a + d) + 5) mod 12)− 5)

12

and

k = 3 · (−11 · (a + d) + 19 · j) + 5 · (7 · (a + d)− 12 · j)−
⌊

7 · (a + d)− 12 · j
5

⌋
,

the set J12,7,3 forms a commutative group under the operation

(a, b, c)(d, e, f) = (a + d, j, k).

Given

j =
7 · ((a + d) mod 12)− (((7 · (a + d) + 5) mod 12)− 5)

12
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and

k = 3(−11((a+d) mod 12)+19j)+5(7((a+d) mod 12)−12j)−
⌊

7((a + d) mod 12)− 12j

5

⌉
,

the set K12,7,3 forms a commutative group under the operation

(a, b, c)(d, e, f) = ((a + d) mod 12, j, k).

Proof 2.4.4

(1) Studying the group operation confirms that it is designed to maintain the set’s closure.

(2) Associativity is inherited from conventional addition of integers, and, in the case of

K12,7,3, addition mod 12 over Z12 and addition mod 7 over Z7.

(3) The identity element of both sets is (0, 0, 0).

(4) Given

j−1 =
−7 · a− (((−7 · a + 5) mod 12)− 5)

12

and

k−1 = (3 · (−11 · (−a) + 19 · j−1) + 5 · (7 · (−a)− 12 · j−1))−
⌊

7 · (−a)− 12 · j−1

5

⌉
,

the inverse of (a, b, c) ∈ J12,7,3 is (−a, j−1, k−1); and, given

j−1 =
7 · (12− a)− (((7 · (12− a) + 5) mod 12)− 5)

12

and

k−1 = 3 · (−11(12− a) + 19j−1) + 5 · (7(12− a)− 12j−1)−
⌊

7(12− a)− 12j−1

5

⌉
,

the inverse of (a, b, c) ∈ K12,7,3 is (12− a, j−1, k−1).

(5) Commutativity is inherited from conventional addition of integers, and, in the case of

K12,7,3, addition mod 12 over Z12 and addition mod 7 over Z7. �
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Z2,3,5 is defined as the set of ordered triples (a, b, c) such that a ∈ Z, b is a member of the

set of integers mod 12 − 5, and c ∈ {−1, 0, 1}. A2,3,5 is defined as the set of ordered triples

(a, b, c) where a ∈ Z, b is a member of the set of integers mod 12 − 5, and c ∈ {−1, 0, 1}.
Further, a is always −blog2(3

b · 5c)c.

Theorem 2.4.5 Given

j =

⌊
((b + 4 · c + e + 4 · f + 5) mod 12)− 5

5

⌉

and

k = ((b + 4 · c + e + 4 · f + 5) mod 12)− 5− 4 · j,

the set Z2,3,5 forms a commutative group under the operation

(a, b, c)(d, e, f) = (a− 4 · c + d− 4 · f + 4 · j, k, j).

Given

j =

⌊
((b + 4 · c + e + 4 · f + 5) mod 12)− 5

5

⌉
and

k = ((b + 4 · c + e + 4 · f + 5) mod 12)− 5− 4 · j,

the set A2,3,5 forms a commutative group under the operation

(a, b, c)(d, e, f) = (−blog2(3
k · 5j)c, k, j).

Proof 2.4.5

(1) Closure is inherited from conventional addition of integers, addition mod 12 over Z12,

and, in the case of A2,3,5, W2,3,5.

(2) Associativity is inherited from conventional addition of integers, addition mod 12 over

Z12, and, in the case of A2,3,5, W2,3,5.

(3) The identity element of both sets is (0, 0, 0).

(4) Given

j−1 =

⌊
((−b− 4 · c + 5) mod 12)− 5

5

⌉
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and

k−1 = ((−b− 4 · c + 5) mod 12)− 5− 4 · j−1,

the inverse of (a, b, c) ∈ Z2,3,5 is

(−a + 4 · c + 4 · j−1, k−1, j−1);

and, given

j−1 =

⌊
((−b− 4 · c + 5) mod 12)− 5

5

⌉
and

k−1 = ((−b− 4 · c + 5) mod 12)− 5− 4 · j−1,

the inverse of (a, b, c) ∈ A2,3,5 is

(−blog2(3
k−1 · 5j−1

)c, k−1, j−1).

(5) Commutativity is inherited from conventional addition of integers, addition mod 12 over

Z12, and, in the case of A2,3,5, W2,3,5.�

R5 is defined as the set of positive rationals with prime limit 5 q = 2a ·3b ·5c such that a ∈ Z,

b is a member of the set of integers mod 12 − 5, and c ∈ {−1, 0, 1}. S5 is defined as the set

of positive rationals with prime limit 5 q = 2a · 3b · 5c where a ∈ Z, b is a member of the set

of integers mod 12 − 5, and c ∈ {−1, 0, 1}. Further, a is always −blog2(3
b · 5c)c.

Theorem 2.4.6 Given q and r ∈ R5, such that q = 2a ·3b ·5c and r = 2d ·3e ·5f , and further

given

j =

⌊
((b + 4 · c + e + 4 · f + 5) mod 12)− 5

5

⌉
and

k = ((b + 4 · c + e + 4 · f + 5) mod 12)− 5− 4 · j,

the set R5 forms a commutative group under the operation

qr = 2a−4·c+d−4·f+4·j · 3k · 5j.

Given q and r ∈ S5, such that q = 2a · 3b · 5c and r = 2d · 3e · 5f , and further given
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j =

⌊
((b + 4 · c + e + 4 · f + 5) mod 12)− 5

5

⌉

and

k = ((b + 4 · c + e + 4 · f + 5) mod 12)− 5− 4 · j,

the set S5 forms a commutative group under the operation

qr = 2−blog2(3k·5j)c · 3k · 5j.

Proof 2.4.6

(1) Closure is inherited from addition of integers, addition mod 12 over Z12, N5, and O5.

(2) Associativity is also inherited from addition of integers, addition mod 12 over Z12, N5,

and O5.

(3) The identity element of both sets is 1.

(4) Given

j−1 =

⌊
((−b− 4 · c + 5) mod 12)− 5

5

⌉
and

k−1 = ((−b− 4 · c + 5) mod 12)− 5− 4 · j−1,

the inverse of q ∈ R5 is

2−a+4·c+4·j−1 · 3k−1 · 5j−1

;

and, given

j−1 =

⌊
((−b− 4 · c + 5) mod 12)− 5

5

⌉
and

k−1 = ((−b− 4 · c + 5) mod 12)− 5− 4 · j−1,

the inverse of q ∈ S5 is

2−blog2(3k−1 ·5j−1
)c · 3k−1 · 5j−1

.

(5) Commutativity is inherited from addition of integers, addition mod 12 over Z12, N5, and

O5.�
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Figure 2.10: Isomorphism between the 12-Tone Scale and Scale-Based JI

Given the key of the music and the 12-tone pitch or pitch-class numbers of every note in

a composition, one can correctly spell and tune the entire piece in scale-based JI using the

maps ζ and y. The function y has already been defined in the previous section. Given an

integer a ∈ Z or a ∈ Z12, the map ζ can be defined as

ζ(a) =
(
a,

7 · a− (((7 · a + 5) mod 12)− 5)

12

)
.

Thus, given an interval measured from the tonic pitch, expressed as a ∈ Z, the function

y(ζ(a)) gives the 12-, 7-, and 3-tone values necessary for correctly rendering the interval in

scale-based 5-limit JI. Because this method assumes the identity element (0,0,0) to be the

tonic pitch, some modifications must be made to these functions if one wishes to perform

this transformation when the tonic is a value other than the identity element. This situation
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would arise, for example, in a piece that modulates. The passage in the subsidiary key

area would require measurement from a non-identity-element tonic. For this purpose, it will

be useful to make use of the fixed-zero convention from pitch-class set theory—that is, the

identity element (0, 0, 0) ∈ K12,7,3 is always the pitch class C. Moreover, we shall (arbitrarily)

define the identity element (0, 0, 0) ∈ J12,7,3 as the pitch C4 (middle C). The ordered triple

t = (t1, t2, t3) will refer to the ordered triple of the current tonic pitch (class) as expressed as

an element of K12,7,3 or J12,7,3. The new functions to work with this fixed-C representation

of H12,7,3 and I12,7,3 are

ζt(a) =
(

a,
7 · a− ((((7 · ((a− t1) mod 12) + 5) mod 12)− 5) + 7 · t1 − 12 · t2)

12

)

and

yt(a,b)=(a, b, (3·(−11·(a−t1)+19·(b−t2))+5·(7·(a−t1)−12·(b−t2)))−
⌊

7·(a−t1)−12·(b−t2)
5

⌉
+t3).

In order to arrive at an ordered triple in H12,7,3 for any note in any key, one must begin

by using the defined value for (middle) C as the first t to “bootstrap” oneself to the correct

ordered triples for the keys and pitches.28 After a brief explanation of how the function ζt

transforms 12-tone pitch integers into their diatonic spellings and how yt then gives the 3-tone

component, we shall then explore the use of this procedure with two concrete examples.

The function ζt is simply a mathematical expression of Rule 4 from Table 2.2. First, ζt

translates the pitch or pitch-class number into an expression of the number of fifths away

from tonic by multiplying by 7 mod 12, and converting 7 through 11 fifths above tonic to −5

through −1 fifths below tonic. Then, ζt converts the number of fifths away from tonic into

step numbers by subtracting the result from 7 times the original pitch number and dividing

the result by 12. In other words, the key-defined step number for any pitch number is equal

to 7 times the pitch number, minus the distance in fifths away from tonic, all divided by

12. The function yt returns the tuning of any pitch in the context of a tonic by finding its

number of fifths away from tonic and dividing its frequency by 1 syntonic comma for every 5

fifths away from tonic (starting at 3 fifths away). Note that y correctly generates the 3-tone

component for any pitch with a specified diatonic spelling, regardless of whether it is in the

28Because the function measures distance in tonal space, the inital key in any analysis will thus be as
closely related to C major in 5-limit JI as possible. The tuning lattice, which we shall examine in Chapter 3,
allows these relationships to be visualized.
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12-note scale given by ζ. This is important because ζt can return values outside of that 12-

note scale. Moreover, the functions ζt and yt cannot completely replace the procedure given

in Table 2.2. One must still use Rules 2–4 to decide which scale’s tonic pitch to use in the

calculations. Further, to make the comma corrections that render the problematic chords in

the system pure, the changes of scale prescribed by Rule 4 in Table 2.2 for non-modulatory

passages must also be included in the calculations in the same manner as modulations and

tonicizations.

The coordinates that result from applying the functions ζt and yt will be used in the next

chapter to graph musical progressions on a Cartesian plane and in transformation networks.

Two examples of the use of ζt and yt will therefore help to clarify how scale-based JI can

be calculated mathematically. First, we shall examine the mathematical derivation of the

spelling and tuning of the simple diatonic progression D: I vi ii V I. Because the pitch

classes in the progression must be judged from a tonic pitch class other than C, our first

step is to use the functions ζ(0,0) and y(0,0,0) to obtain a t value for the key of D. Applying

the pitch class integer of D, 2, to the function ζ(0,0) gives the expression ζ(0,0)(2) = (2, 1).

Then applying the result (2,1) to the function y(0,0,0) generates y(0,0,0)(2, 1) = (2, 1, 1). The

value of t we shall rely upon for much of this progression will thus be t = (2, 1, 1). Next,

we shall use the functions ζ(2,1) and y(2,1,1) to obtain the I12,7,3 value of each member of

the first chord. The members of the tonic chord in D major, pitch classes 2, 6, and

9, generate the expressions y(2,1,1)(ζ(2,1)(2)) = (2, 1, 1), y(2,1,1)(ζ(2,1)(6)) = (6, 3, 2), and

y(2,1,1)(ζ(2,1)(9)) = (9, 5, 3), respectively. In order to calculate values for the vi chord, we

must consult Rule 4 of Table 2.2 to determine if a new t is needed. Since the vi harmony is a

non-dominant chord in the original key, Rule 4 dictates that we use the closest chord member

(other than the seventh) to 1̂ and 5̂ on the line of fifths as the new t value. This happens to be

1̂ in this case, so no change of t is required. The expressions for pitch classes 11, 2, and 6 are

thus y(2,1,1)(ζ(2,1)(11)) = (11, 6, 3), y(2,1,1)(ζ(2,1)(2)) = (2, 1, 1), and y(2,1,1)(ζ(2,1)(6)) = (6, 3, 2).

Following the same procedure for the ii chord, we find that we must use 4̂ as the new t

value, since it is the closest chord member to 1̂ on the line of fifths. Therefore, we calculate

the new t in terms of the old t by deriving y(2,1,1)(ζ(2,1)(7)) = (7, 4, 2). Using the new

t for the ii chord, we obtain y(7,4,2)(ζ(7,4)(4)) = (4, 2, 1), y(7,4,2)(ζ(7,4)(7)) = (7, 4, 2), and

y(7,4,2)(ζ(7,4)(11)) = (11, 6, 3). The change of t to (7, 4, 2) in this case gives a different 2̂

(4, 2, 1) from the 2̂ generated by y(2,1,1)(ζ(2,1)(4)) = (4, 2, 2). Because the next chord is a

dominant chord, Rule 2 of Table 2.2 requires that its t value be taken from the key in

which it is functioning (2, 1, 1). Thus the V chord’s values are y(2,1,1)(ζ(2,1)(9)) = (9, 5, 3),

y(2,1,1)(ζ(2,1)(1)) = (1, 0, 1), and y(2,1,1)(ζ(2,1)(4)) = (4, 2, 2). The final tonic chord of this

progression has the same values as the opening tonic.
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We may wish to translate these I12,7,3 elements into equivalent elements of the isomorphic

groups, such as frequency ratios (in O5). Because we are using a unified tonal space that is

capable of describing the relationships among tones in many keys, these JI ratios will always

be expressed in relation to the identity element C, rather than the tonic pitch. In Chapter 3,

we shall use the coordinates of the V2,3,5 row vectors to graph chords and progressions on

the just-intonation Tonnetz. In order to obtain the equivalent V2,3,5 row vectors to the

I12,7.3 elements we derived using ζt and yt, we must apply the function h−1 to each of the

results that we have just calculated. For example, the 2̂ in the ii chord, which has I12,7,3 value

(4, 2, 1), can be translated using the expression h−1(4, 2, 1) = (−2, 0, 1). This, in turn, can be

translated into a frequency ratio (relative to C) by applying v−1(−2, 0, 1) = 2−2 ·30 ·51 = 5/4.

Likewise, the V chord’s 2̂ (4, 2, 2) gives the V2,3,5 and N5 elements h−1(4, 2, 2) = (−6, 4, 0)

and v−1(−6, 4, 0) = 2−6 · 34 · 50 = 81/64. From these two ratios we can see that, as we noted

in Section 2.2, the application of the rules in Table 2.2 cause a theoretical syntonic comma

shift between 2̂ in the ii chord (5/4) and 2̂ in the V chord (81/64 = 5/4 · 81/80). If we had

not taken special care to heed Rule 4 in Table 2.2 when performing our calculations, the

result would have been an impure theoretical tuning of the supertonic triad. In chromatic

progressions, further decisions must be made beyond the simple application of the functions

ζt and yt. We shall thus examine one more example of the derivation of scale-based JI from

pitch-class integers.

For our second example of the arithmetic calculation of scale-based JI, suppose that a

piece in G major contains the abruptly modulatory progression G: I vi E[: V7/[III V6
5 I. To

find the scale-based JI values for this progression, our first action is to find the I12,7,3 value of

the tonic G (pitch class 7). To do this, t = (0, 0, 0) will be used to find the closest G (tonally)

to the origin or identity (0, 0, 0). Hence we can write y(0,0,0)(ζ(0,0)(7)) = (7, 4, 2). To obtain

the frequency ratio of this G relative to C, apply the function v−1(h−1(7, 4, 2)) = 3/2. Within

this key, to obtain the I12,7,3 ordered triples of the pitch classes G, (pc 7), B (pc 11), and D (pc

2) of the first chord, we apply y(7,4,2)(ζ(7,4)(7)) = (7, 4, 2), y(7,4,2)(ζ(7,4)(11)) = (11, 6, 3), and

y(7,4,2)(ζ(7,4)(2)) = (2, 1, 1). As the submediant triad (pcs 4, 7, and 11) contains 1̂, we shall

calculate it with reference to the same tonic: y(7,4,2)(ζ(7,4)(4)) = (4, 2, 1), y(7,4,2)(ζ(7,4)(7)) =

(7, 4, 2), and y(7,4,2)(ζ(7,4)(11)) = (11, 6, 3). As the third chord has dominant function, we shall

take the members of this chord from the scale of the key in which it functions. The tonic

of the new key is pitch class 6 and, because of Rule 4 in Table 2.2, will take its value from

the function y(7,4,2)(ζ(7,4)(6)) = (6, 3, 2). Hence the I12,7,3 values of the members of the third

chord (pcs 1, 5, 8, and 11) may be derived using the functions y(6,3,2)(ζ(6,3)(1)) = (1, 0, 1),

y(6,3,2)(ζ(6,3)(5)) = (5, 2, 2), y(6,3,2)(ζ(6,3)(8)) = (8, 4, 3), and y(6,3,2)(ζ(6,3)(11)) = (11, 6, 3).

Note the common-tone connection between pc 11 in the second chord and pc 11 in the
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third chord. As the fourth chord has dominant function in a different key, we shall derive

the new scale from the scale most recently used: y(6,3,2)(ζ(6,3)(3)) = (3, 1, 1). Note that

ζ(6,3)(3) = (3, 1) is D], rather than E[. The members of the fourth chord (pcs 2, 5, 8,

and 10) will thus be represented by y(3,1,1)(ζ(3,1)(2)) = (2, 0, 1), y(3,1,1)(ζ(3,1)(5)) = (5, 2, 2),

y(3,1,1)(ζ(3,1)(8)) = (8, 4, 2), and y(3,1,1)(ζ(3,1)(10)) = (10, 5, 3). In this case, two common

tones are held from the previous chord and must thus maintain the same values. The

final chord’s members (pc 3, 7, and 10) will derive its ordered triples from the same

scale as the previous chord: y(3,1,1)(ζ(3,1)(3)) = (3, 1, 1), y(3,1,1)(ζ(3,1)(7)) = (7, 3, 2), and

y(3,1,1)(ζ(3,1)(10)) = (10, 5, 3).

Though this mathematical method for generating the coordinates of any pitch or pitch-

class in tonal space is necessary for the consistent analysis of extended-tonal music, the pure

numerical results are not comprehensible in an immediate and intuitive way. Therefore, in

Chapter 3, we shall explore several spatial views of the diatonic/just-intonation system. The

products that result from the functions h−1(yt(ζt(a))) and yt(ζt(a)) will be applied to the

just-intonation Tonnetz and used in transformational networks. These networks will form

the apparatus for displaying analyses in Chapter 5.
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CHAPTER 3

SPATIAL GRAPHS AND TRANSFORMATION NETWORKS

3.1 The Just-Intonation Tonnetz

The Tuning Lattice

The previous chapter introduced a scale-based method for deciding diatonic spelling and

tuning intervals in just intonation. These intervals in JI were represented in pitch-class

space as the number of fifths and major thirds that comprise the interval. For example, an

ascending minor third or descending major sixth is one fifth “up” from the lower note and

one major third “down” from there.1 This interval can thus be represented as the ordered

pair (1,−1).2 Using this ordered pair, a Cartesian plane, or tuning lattice, can thus be

constructed to represent O5, the set of octave-reduced intervals in 5-limit JI.3 A minor

third away from the origin would thus have x coordinate 1 and y coordinate −1, as shown

in Figure 3.1. There is, of course, a lattice point (1,−1) away from any other point on

the lattice; thus, the origin here simply represents the first note of the ordered pitch-class

interval. If we wish to assign the pitch-class C to the lattice point (0, 0), then the entire

lattice can be given note-name labels, as seen in Figure 3.2. Since the lattice in Figure 3.2

extends infinitely in all directions, there is an infinite number of spellings of any of the 12

pitch classes, all separated by (0,−3) = 128/125, and an infinite number of instances of each

1Since interval directionality breaks down in octave-equivalent pitch-class space, one fifth “up” between
pitch classes may also be represented in music as one fourth down.

2Recall from Section 2.2 and Section 2.3 that in V2,3,5 the first component of the ordered triple represents
the number of octaves in the interval; and in W2,3,5 this number is dependent upon the second and third
components, always reducing the interval to within the span of an octave. The first component can always
be generated from the second and third components, and thus can be dropped when it is convenient to do so.
To include the first component of the ordered triple on the tuning lattice would require a three-dimensional
lattice with x, y, and z axes. This, however, is unnecessary and unwieldy for our purposes. Oettingen (1866)
was the first theorist to use this notation for pitch-classes and intervals and apply it to the tuning lattice.

3The tuning lattice is familiar to music theorists (who know it as the “Tonnetz”) from its origins in Euler
1739, 1773, Oettingen 1866, and Riemann 1915, and its recent revival in Hyer 1989, 1995, Mooney 1996,
Cohn 1997, 1998a, and the work of many other neo-Riemannian theorists.
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spelling separated by (4,−1) = 81/80, the syntonic comma. This way of thinking about

the Tonnetz is demonstrated nicely by the structure of the group I12,7,3, where the first

component of the ordered triple (containing only the integers mod 12) restricts the number

of pitch-classes to 12, but the second and third components (each containing the set of all

integers) allow for infinite spellings of these pitch classes and infinite syntonic-comma shifts

of each spelling.

−3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3 3, 3

−3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2

−3, 1 −2, 1 −1, 1 0, 1 1, 1 2, 1 3, 1

−3, 0 −2, 0 −1, 0 0, 0
(1,−1)

��

1, 0 2, 0 3, 0

−3,−1 −2,−1 −1,−1 0,−1 1,−1 2,−1 3,−1

−3,−2 −2,−2 −1,−2 0,−2 1,−2 2,−2 3,−2

−3,−3 −2,−3 −1,−3 0,−3 1,−3 2,−3 3,−3

Figure 3.1: Ascending Minor Third/Descending Major Sixth on the Tuning Lattice
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D] A] E] B] F]] C]] G]]

B F] C] G] D] A] E]

G D A E B F] C]

E[ B[ F C
(1,−1)

��

G D A

C[ G[ D[ A[ E[ B[ F

A[[ E[[ B[[ F[ C[ G[ D[

F[[ C[[ G[[ D[[ A[[ E[[ B[[

Figure 3.2: Minor Third/Major Sixth on the Tuning Lattice with Letter Names
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Temperaments on the Tuning Lattice

In Section 2.2, we examined the use of the matrices

H =


12 7 3

19 11 5

28 16 7

 and H−1 =


−3 −1 2

7 0 −3

−4 4 −1

 .

The columns of H can be thought of as the number of steps that approximate harmonics

2, 3, and 5, in 12-, 7-, and 3-tone equal temperament. The rows of H−1 can be thought of

as the values in V2,3,5 of three intervals.4 The three intervals given by the rows of H−1 are

25/24, 128/125, and 81/80. Three submatrices of H−1,

 h−1
2,2 h−1

2,3

h−1
3,2 h−1

3,3

 ,

 h−1
3,2 h−1

3,3

h−1
1,2 h−1

1,3

 , and

 h−1
1,2 h−1

1,3

h−1
2,2 h−1

2,3

 ,

give determinants 12, 7, and 3.5 Defining these three submatrices may be thought of as

assuming octave equivalence (ignoring the first column) and defining the two unison vectors

(i.e. the commas that are tempered out) for the (equal) temperament that contains the

determinant’s number of notes. The unison vectors are the values in W2,3,5 of the two rows

of the given submatrix. By projecting these two intervals across the tuning lattice, an equal

temperament can thus be visually represented as in Figure 3.3. The unison vectors together

intersect to form a parallelogram (actually an infinite number of congruent parallelograms)

on the tuning lattice, and the area of each section of the lattice defined by the parallelogram

is equal to the number of notes in the temperament. Since coordinates on the tuning lattice

represent row vectors from W2,3,5, Figure 3.3 shows that a 12-tone scale tempers out the

two commas 128/125 = (0,−3) and 81/80 = (4,−1). As we have just noted in Figure 3.2,

128/125 is the difference in 5-limit JI between enharmonically equivalent pitch classes such

as C] and D[; and 81/80 (the syntonic comma) is the difference in 5-limit JI between 4 just

perfect fifths and a just major third (given by the fifth partial of the harmonic series). The

determinant of the 2×2 matrix for each combination of unison vectors given above gives the

4Any three distinct intervals would suffice, provided the result is a unimodular matrix. The three ordered
triples in H−1, however are particularly useful, as the 12-, 7-, and 3-tone scales generated by the matrix’s
inverse H are privileged by diatonic scale theorists.

5Those who are familiar with matrices and determinants will see that the reason why the determinants
of the submatrices coincide with values from H−1’s reciprocal matrix H follows from the definition of a
reciprocal matrix (or inversion matrix).
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area of the parallelogram and thus the number of tones in the equal temperament that maps

(tempers) all tones by those two unison vectors (commas). Any equal temperament can be

determined in this way by two commas.6

−4, 5 −3, 5 −2, 5 −1, 5 0, 5 1, 5 2, 5 3, 5 4, 5

−4, 4

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW −3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4 3, 4 4, 4

−4, 3 −3, 3 −2, 3 −1, 3 0, 3

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW 1, 3 2, 3 3, 3 4, 3

−4, 2 −3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2 3, 2 4, 2

−4, 1

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW −3, 1 −2, 1 −1, 1 0, 1 1, 1 2, 1 3, 1 4, 1

−4, 0 −3, 0 −2, 0 −1, 0 0, 0

[0,−3]

[4,−1]

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW 1, 0 2, 0 3, 0 4, 0

−4,−1 −3,−1 −2,−1 −1,−1 0,−1 1,−1 2,−1 3,−1 4,−1

−4,−2

WWWWWWWWWWWWWWWWWWWWWWWWWWWWW −3,−2 −2,−2 −1,−2 0,−2 1,−2 2,−2 3,−2 4,−2

−4,−3 −3,−3 −2,−3 −1,−3 0,−3

WWWWWWWWWWWWWWWWWWWWWWWWWWWWW 1,−3 2,−3 3,−3 4,−3

−4,−4 −3,−4 −2,−4 −1,−4 0,−4 1,−4 2,−4 3,−4 4,−4

−4,−5 −3,−5 −2,−5 −1,−5 0,−5 1,−5 2,−5 3,−5 4,−5

Figure 3.3: 12-Tone Equal Temperament on the Tuning Lattice

6Because there are musically nonsensical ways of constructing temperaments using this mechanism, it is
important for the theorist to determine a priori which commas are theoretically useful in the definition of
that n-note scale.
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Enharmonic Progressions on the Tuning Lattice

The Tonnetz has the ability to illustrate the motion of chord progressions in tonal space.

Figure 3.4 shows the shapes that various pitch-class sets will form when each is deployed

on the tuning lattice. The chords in this chart are not to be interpreted as bearing any

relationship to one another in tonal space. They are given here only so that their shapes will

be recognizable when they are seen on a Tonnetz. In Figure 3.4, whenever there is more than

one distinct tuning of a particular pitch-class set, a Roman numeral analysis of the chord

replaces the simple chord-quality label to indicate the chord’s function-based tuning. The

Roman numeral is also given for shapes where the chord’s quality itself (e.g. fully-diminished

seventh) implies a distinct tonal function (which may occasionally be left unfulfilled in

practice).

Progressions that exhibit “diatonic drift”—that is, they return to an enharmonically

respelled chord or key area—will visibly drift when they are mapped on the just-intonation

tuning lattice. While many of the possible progressions in chromatic harmony qualify as

enharmonic progressions, some composers (e.g. Liszt) favored root motion by intervals that

divide the octave evenly, such as major or minor thirds. Figure 3.5 shows the ascending-

major-third enharmonic progression from Figure 2.1 on the tuning lattice. Note that the

origin (0, 0) represents the pitch class C; the function y(0,0,0)(ζ0,0(2)) = (2, 1, 1) generates the

coordinates h−1(2, 1, 1) = (2, 0) for the initial tonic D; and the W2,3,5 values (or Cartesian

coordinates) of each chord in the progression are drawn from a different scale (because of

non-tertian results in Rule 1 of Table 2.2). While the progression in Figure 3.5 ascends by

major thirds, the progression in Figure 3.6 descends by minor thirds. This example also

drifts away from the initial chord in tonal space, but the ultimate chord in the progression

is a syntonic comma (4,−4, 1) lower than the ultimate chord in Figure 3.5. In terms of

diatonic spelling, the chords are the same, but the third terms in their I12,7,3 ordered triples

are different. Root motion by different intervals that divide the octave evenly thus all end

on chords whose roots are different by one or more syntonic commas. Different types of

enharmonic progressions therefore wander off in different directions.

As a theoretical entity, this “Tonnetz drift” is clearly the result of a dogged adherence

to diatonic spelling according to tonal function. Whenever enharmonic progressions appear

in tonal music, the perception of the equivalence of the respelled chords or keys implies a

conceptual tempered system (viz. a 12-tone temperament). Enharmonic equivalence is thus a

prerequisite for the use of this type of progression. Nevertheless, there is a phenomenological

confusion inherent in such progressions.7 While it is easy enough with the progression from

7Cohn (1996, 11), when discussing Lewin’s (1984) view of enharmonic progressions as “paradoxical and
illusory” in Wagner’s Parsifal, uses the term “vertigo” to describe the effect of such progressions, “which
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Figure 3.4: Shapes of Various Tonal Chords on the Tuning Lattice

Figure 2.1 to hear the last chord as being the same as the first, it is also easy to imagine

how one might lose track of tonic if each of these chords is compositionally expanded into

a key area. This perceptual ambiguity between moving away from and returning to tonic

allows for intriguing interpretations of this music. The progression through tonal space

suggests metaphors of tonal motion as a journey, where diatonic progressions are trips

through the well-known paths of the local neighborhood, and where enharmonic progressions

are bewildering paths to distant but somehow familiar regions or long journeys that return

to a home where something significant has changed. In Section 5.1 the interpretive potential

of these metaphors is explored in the analysis of a song by Wolf that features enharmonic

progressions.

at once divide their space equally and unequally. . . . The enharmonic shift cannot be located: it occurs
everywhere, and it occurs nowhere.”
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−3, 4 −2, 4 −1, 4 0, 4 1, 4 2, 4

??
??

??
??

??
??

3, 4

−3, 3 −2, 3 −1, 3 0, 3 1, 3 2, 3

??
??

??
??

??
??

3, 3
(0,1)

UU

−3, 2 −2, 2 −1, 2 0, 2 1, 2 2, 2

??
??

??
??

??
??

3, 2
(0,1)

UU

−3, 1 −2, 1 −1, 1 0, 1 1, 1 2, 1

??
??

??
??

??
??

3, 1
(0,1)

UU

−3, 0 −2, 0 −1, 0 0, 0 1, 0 2, 0 3, 0

−3,−1 −2,−1 −1,−1 0,−1 1,−1 2,−1 3,−1

Figure 3.5: The Enharmonic Progression from Figure 2.1 on the Tuning Lattice

3.2 Just-Intonation and Mod-12/7 Transformational Networks

Just-Intonation Networks

Figure 3.7 shows a transformational network in Lewin 1987, 170 (Lewin’s Figure 7.9).

Lewin uses this graph, which he calls a fundamental-bass network, to relate two passages in

Beethoven’s Symphony No. 1 in C Major: the openings of the first and third movements. The

nodes of the graph are chord roots and transformations are indicated by the frequency ratios

associated with the arrows between the nodes. While Lewin is clearly operating in pitch-class

space, his transformations do not adhere to the group O5.
8 We could create a descending

octave-reduced 5-limit JI group isomorphic to O5 (as Lewin has), or we could simply map

Lewin’s fractions to equivalent ratios in O5: 4/3, 1, and 5/3. Note that the transformations

do not indicate how the quality of the chord that is generated relates to the original chord.

8Lewin entirely uses descending intervals between 1/2 and 1 in order to “capture the ‘falling’ sense of the
root progressions”.
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−3, 5 −2, 5

??
??

??
??

??
??

−1, 5 0, 5 1, 5 2, 5 3, 5

−3, 4 −2, 4 −1, 4

??
??

??
??

??
??

0, 4 1, 4 2, 4 3, 4

(−1,1)

XX

−3, 3 −2, 3 −1, 3 0, 3

??
??

??
??

??
??

1, 3 2, 3 3, 3

(−1,1)

XX

−3, 2 −2, 2 −1, 2 0, 2 1, 2

??
??

??
??

??
??

2, 2 3, 2

(−1,1)

XX

−3, 1 −2, 1 −1, 1 0, 1 1, 1 2, 1

??
??

??
??

??
??

3, 1

(−1,1)

XX

−3, 0 −2, 0 −1, 0 0, 0 1, 0 2, 0 3, 0

Figure 3.6: An Enharmonic Progression by Minor Thirds on the Tuning Lattice

In other words, the A-minor triad in Figure 3.7 does not result from the transformation

5/6, as this transformation could just as easily generate an A-major triad. This type of

network is thus only able to represent root motion, not the content of each chord.9 This

lack of specificity about chord quality is also a feature of the simplest form of mod-12/mod-7

network that we shall explore in this dissertation. For the present analytical purposes, the

fundamental bass is sufficient, but features of Hook’s unified triadic transformations can be

incorporated into the mod-12/mod-7 networks to represent chord quality as well.10

The elements of O5 that indicated intervals of root motion can also be represented

as elements from the groups W2,3,5 and I12,7,3. Figure 3.8 rewrites Lewin’s Figure 7.9

using elements from W2,3,5 that are structurally equivalent to the O5 ratios of Lewin’s

network. While this form of the network is useful for mapping the transformations onto the

tuning lattice, this is not the most convenient format for reading the transformations easily.

9Lewin later introduces Klang networks to solve this problem, and Hook (2002) builds upon Lewin’s
Klang networks to create a complete group of unified triadic transformations.

10We shall discuss further the sufficiency of the fundamental-bass progression for representing the entire
texture of a piece in Section 4.1.
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?>=<89:;D
2/3

��?
??

??
??

??

76540123G
2/3

��?
??

??
??

??
1 //76540123G

76540123C
2/3

��?
??

??
??

??
1 //76540123C

5/6

��?
??

??
??

??

76540123F 76540123a

Figure 3.7: A Just-Intonation Transformation Network in Lewin 1987

Figure 3.9 translates the transformations from the previous two networks into elements of

I12,7,3. In this form of the network, it is easy to find both the generic and specific sizes of

the intervals between the roots. The third component of the ordered triple can typically

be generated from the first two using the function y, and will thus not always be included

in networks of this type. We shall therefore refer to this type of transformational graph as

a mod-12/mod-7 network. For the remainder of this chapter we shall explore this type of

network further.

?>=<89:;D
(2,−1,0)

��?
??

??
??

??

76540123G
(2,−1,0)

��?
??

??
??

??
(0,0,0) //76540123G

76540123C
(2,−1,0)

��?
??

??
??

??
(0,0,0) //76540123C

(0,−1,1)

��?
??

??
??

??

76540123F 76540123a

Figure 3.8: Variant of the Just-Intonation Transformation Network in Lewin 1987
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(5,3,1)

��?
??

??
??

??
(0,0,0) //76540123G

76540123C
(5,3,1)

��?
??

??
??

??
(0,0,0) //76540123C

(9,5,2)

��?
??

??
??

??

76540123F 76540123a

Figure 3.9: Second Variant of the Just-Intonation Transformation Network in Lewin 1987

Mod-12/Mod-7 Networks

As we have just discovered, Lewin’s fundamental-bass networks can be relabelled as

mod-12/mod-7 networks without losing any substantial information. Just like any trans-

formational network, mod-12/mod-7 networks provide flexible graph structures that can be

organized to display certain structural features of the music. For example, the nodes can

be organized into harmonic regions so that, when the arrows reflect the temporal order

of the music, the graph suggests a journey through these areas. Lewin’s fundamental-bass

network in Figure 3.7 does this to a certain extent, displaying dominant-tonic relationships as

diagonals in one direction, and displaying the tonic-dominant relationships of each successive

two-chord progression as diagonals in the opposite direction. In the next section we shall

explore further possibilities with regard to organizing graphs to reflect tonal hierarchies.

Mod-12/mod-7 networks can also serve to highlight some of the peculiarities of JI-based

diatonic spelling, such as diatonic drift. As an example, Figure 3.11 graphs the enharmonic

progression from Figure 2.1 and Figure 3.5. For the most part, the arrows indicate the

temporal order of the chords in the progression. The arrow from C]] back to D, however,

indicates a retrospective comparison between the newly achieved chord and the original tonic

triad. If the music were to continue on from here, the network would also have a second

arrow from the C]] to whatever chord root follows it in the score. If a piece of music were

to drift further diatonically, the chord roots would become increasingly burdened by n-tuple

sharps or flats and increasingly unwieldy to interpret. We shall thus henceforth use the

convention that chord roots will always be spelled as they appear in the score. Figure 3.2

rewrites Figure 3.11 using this convention to simplify the spelling only in the network’s nodes.

While this procedure simplifies root note names such as C]], it creates a discrepancy between
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the spelling of the nodes and the spellings implied by the transformations. As enharmonic

respellings are always expressed by either (0, 6) or (0, 1), the transformations accompanying

the arrows will clearly show enharmonic progressions without the need to respell the roots’

note names as well. In other words, only the transformations accompanying the network’s

arrows are to be used for interpreting the diatonic spelling or JI tuning of the chords in the

piece. To accomplish this, we shall create a function α to generate the ordered-pair value

of the first node. Let a be an integer representing the letter name of the pitch class, where

C = 0, D = 1, . . . , B = 6. Further, let b be an integer value corresponding to the pitch

class’s chromatic alteration, where . . . , [[ = −2, [ = −1, \ = 0, ] = 1, ]] = 2, . . . . Given a

and b, we can define the function α(a, b) = ((((((2 · a) mod 7) · 7) mod 12) + b) mod 12, a).

The correctly spelled ordered pair of any other node can be generated by taking the

sum (mod-12 and mod-7) of this first node’s ordered pair and the ordered pairs of all

intervening transformational arrows along a single path. In order to translate that node’s

ordered pair back into its correctly spelled note name, apply the inverse function α′(c, d) =

(d, ((((7 · c) mod 12)− (((2 · d + 1) mod 7)− 1) · 7 + 5) mod 12)− 5). While these functions

clarify and formalize the interpretation of mod-7 transformations, they can be bypassed

entirely once familiarity with the mod-12/mod-7 notation for diatonic spelling is achieved.

D
(4,2) // F]

(4,2) // A]
(4,2) // C]]

(0,1)

��

Figure 3.10: Mod-12/Mod-7 Network Showing Progression in Figure 2.1

D
(4,2) // F]

(4,2) // B[
(4,2) // D

(0,1)

��

Figure 3.11: Mod-12/Mod-7 Network Simplifying Root Spelling in Figure 3.11
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3.3 Prolongational Transformational Networks

Networks for Schenkerian Analyses

While mod-12/mod-7 networks are useful for obtaining a clear perspective of enharmonic

progressions, they may also aid the visualizion of tonal hierarchies. Figure 3.12 reproduces

a transformation network in Lewin 1987, 216 (Lewin’s figure 9.16) that is designed to

encapsulate many of the basic features of an outer-voice Schenkerian sketch. The nodes of

Lewin’s graph contain a chord symbol, the soprano scale degree supported by that harmony,

and the hierarchical level of the chord in the analysis. The suggestive names of Lewin’s

transformations are almost descriptive enough to completely decipher how they act on the

chords. The transformation PROJ moves a chord into the next higher or lower analytical

level on the graph without changing anything but the third component of the node’s ordered

triple. SUST and N+ operate on the second component of the ordered triple, indicating

the sustaining of the Urlinie scale degree or an upper neighbor.11 DOM transposes a triad

up by 5 semitones (or down by 7 semitones), and likewise SUBD transposes a triad down

by 5 semitones (e.g. DOM maps F major to B[ major, and SUBD reverses the mapping).

REL and PAR are neo-Riemannian operations that change the mode of a triad by means of

a contextual inversion. REL produces a triad representing the relative major or minor key

(e.g. REL maps G major to E minor and vice versa), and PAR produces a triad representing

the parallel major or minor mode (e.g. PAR maps E minor to E major and vice versa). Based

on Lewin’s model, it would be possible create similar networks describing the Schenkerian

composing-out of entire pieces. One could thus translate back and forth between a graph

of this type and rudimentary Schenkerian notation on a staff. Figure 3.13 performs this

translation of Lewin’s network in Figure 3.12 into a Schenkerian sketch. While the notation

in Figure 3.12 accurately represents Lewin’s network, using open noteheads and stems to

distinguish between analytical levels, a Schenkerian sketch that uses idiomatic notation might

include extra features such as an eighth-note flag on the bass note E[.12

Although mod-12/mod-7 transformations typically are not full-fledged klang networks

as is Lewin’s graph, fundamental-bass progressions alone can be representative of harmonic

prolongation. Figure 3.14 replicates Lewin’s graph as a mod-12/mod-7 prolongation network.

Each node of the network is represented as an ordered pair where the components are

11One could thus imagine other possible operations such as DESC, CS, N-, P+, and P-, for Urlinie descents
to the next scale degree, consonant skips, lower neighbors, and Züge (passing/linear motion).

12This brings up the question of whether these networks are in any way a useful replacement for Schenkerian
notation. I believe that Schenkerian notation offers the possibility of more sophistication, subtlety, and
complexity than a prolongational network. The networks can, however, serve a pedagogical purpose or offer
a tool for clarifying one’s thoughts about what pitches exist on what levels of the piece’s hierarchical analysis.
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Figure 3.13: Lewin’s Prolongational Transformation Network as a Schenkerian Sketch

fundamental bass (and quality), prolongational level. The transformations are no longer

represented as ordered pairs in this network, but instead as ordered triples. The third

component of the ordered triple is not the 3-tone component of the I12,7,3 element, but

rather an operation on the level component of the nodes. All transformations that move
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to members of the same level have 0 as their third component, while transformations that

project a chord into a shallower hierarchical level or refer back to a deeper level have +1

or −1 as their third components, respectively. For purposes of clarity, in future graphs,

this third component of the transformation may be left out in networks where the third

component’s value is always obvious from context.

Certainly Lewin’s network has more musical specificity and intuitive appeal than the

mod-7 network in Figure 3.14. In the present case, the only real advantage of the

mod-12/mod-7 transformations is that they encapsulate information about a work’s tonal

scale-degree functions that is not found in the mod-12 perspective embodied by Lewin’s

transformations.13 In general, mod-12/mod-7 networks make use of a larger group of

transformations than Lewin’s networks and thus may address more complicated music. For

example, to represent a simple chord progression such as major V to minor i a Lewinian

network would have to combine two operations, PAR(DOM), while the mod-7 transformation

is simply (5, 3). A different example, where V moves to iv, would require three of Lewin’s

operations, DOM(PAR(DOM)), while the mod-12/mod-7 operation is merely (10, 6).14

While transformation networks are often trivial for simple chord progressions, and while

Lewin’s networks are preferable for the prolongational analysis of traditional tonal music,

mod-12/mod-7 networks may be more useful for representing enharmonic progressions or

prolongational hierarchies of non-traditional progressions with precision. We shall therefore

explore both of these applications. First, the next section will demonstrate the use of

prolongational networks to refine the transformational graphing of enharmonic progressions.

Then, in Chapter 5 we shall use mod-12/mod-7 prolongational networks to explore both the

analysis of music that features enharmonic progressions, and the analysis of works that resist

a strict Schenkerian analysis.

Enharmonic Progressions in Mod-12/Mod-7 Prolongational Networks

Figure 3.15 represents Figure 2.1 using a mod-12/7 prolongational network. Recall that

we have already used Figure 3.5 and Figure 3.11 to elucidate the enharmonic progression in

Figure 2.1. Figure 3.11 uses a transformational arrow from the final chord in the progression

back to the first chord to show the retrospective connection between the two diatonically

different chords. While the perceptual metaphor implied by this transformational network

indeed captures Lewin’s sense of the paradoxical quality of this progression (inducing Cohn’s

13Q.v. Cohn’s (1998a) quote in Section 1.2 on page 4. This certainly is no reason to abandon Lewin’s
graph in favor of the mod-12/mod-7 graph.

14In this case, DOM(PAR(DOM)) captures an aural sense of the progression rather poorly, especially if
the progression simply resolves the dominant deceptively.
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Figure 3.14: Lewin’s Prolongational Transformation Network as a Mod-12/Mod-7 Graph

“vertigo”),15 a prolongational view, on the other hand, compares the final chord to a prolonged

chord on a more background level, thus providing a more accurate theoretical assessment of

the reason for the confusion of diatonic degrees. Specifically, if one is to hear the progression

as prolonging the first D major chord, there must be a mental diatonic correction of the final

chord, which is shown in the arrow pointing back to the first level.16

Enharmonic progressions are not the only oddities of chromatic harmony that are

illuminated by a transformational perspective. In Section 5.2, we shall examine the graph

structure that results from the use of mod-12/7 networks on a work that ends in a different key

from its opening. Other examples of unconventional tonal usage may also result in unusual

network structures as well. It is important to note, however, that these transformational

networks could possibly create formally correct but musically meaningless structures. To

create a prolongational graph, one must simply be able to determine the roots of the chords

in the music. While chords that resist traditional root-finding methods are an impediment to

using these networks, they are also an impediment to the analysis of music as a prolongational

15Q.v. footnote 7.
16The reader is reminded of our convention to use convenience spellings in the nodes, since the transfor-

mations define the theoretical spellings.
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structure. The next chapter seeks first to establish a single method for determining chord

roots, and then, more importantly, to define the terms within which prolongation may be

posited.
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Figure 3.15: Mod-12/Mod-7 Prolongational Network Showing Progression in Figure 2.1
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CHAPTER 4

DETERMINING CHORDAL SALIENCE IN

POST-FUNCTIONAL MUSIC

In Chapter 2, we built a foundation for the diatonic interpretation of tonal music.

While the diatonic spelling procedures given in Table 2.2 return consistent results provided

an accurate key analysis of the work (including all tonicizations and modulations), post-

functional music may thwart key analysis through ambiguity of chord function or of diatonic

scale. The first and most important impediment to prolongational analysis of post-tonal

literature is thus ambiguity of key center. Indeed, diatonic spelling based on a tonal center

is an important element in the hierarchization of the music’s pitch-class content, since the

diatonic scale itself represents a hierarchy around a tonal center. Diatonic scale members tend

to be structural, and chromatic notes tend to be transient. Furthermore, diatonic spelling

allows for the discovery of passing and neighboring motions in diatonic pitch-class space.1

Pervasively fluent passages are helpful in determining how one might go about hearing a

passage as prolonging one harmony, but pervasive fluency does not determine what chords

are structural or how one may find prolongations. This chapter addresses how one might

decide what is structural when the music defies certain norms of tonal harmony. In order to

display the resulting passage as a mod-12/mod-7 prolongational network, one must reduce

the chord progression to a fundamental-bass pattern. It will thus be helpful to have a

consistent way of representing the root of a chord.

4.1 Finding Chord Roots

Hindemith (1942) provides a comprehensive method for determining the root of any

chord based on his dogmatic view that there is an acoustical necessity for all chords to have

a single root, that the idea of chord inversion is somewhat misguided, and that determining

1In Section 1.3 we examined Jones’s (2002) theory of prolongation in chromatic harmony through the
analysis of pervasive fluency. Pervasively fluent passages (PFPs) contain passing and neighboring connections
among all chord members of both the initiating and terminating chords.
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chord roots by stacking a chord in thirds should be replaced by a more comprehensive

intervallic analysis. For our present purposes, we need not make such definitive statements

regarding the structure of a chord or the relative prominence of its members.2 When creating

a mod-7 transformational network, the analyst must select the part of the chord that is to

participate in a fundamental-bass progression. For this purpose consistency of result is

more useful than “correctness” of root. In other words, while it would be ideal for our

analytical system to allow the freedom to choose a system of contrapuntal representation

that suits one’s own theoretical bias,3 arguably the most accessible transformational graphs

are those that display chord symbols in a widely accepted and highly legible format. Because

popular chord symbols, along with our system of diatonic spelling, have the potential for

representing the same contrapuntal information as a thoroughbass reduction or Jones’s

diatonic lattice, I have made an arbitrary choice to use that system of chord analysis.

Fundamental bass analysis does not emphasize the contrapuntal structure of the progressions

it represents—rather, it emphasizes the vertical structures in the music. Because harmonic

analysis, though downplaying horizontal concerns, still retains contrapuntal information, the

analyst is still obligated to translate the chord notation into a format where the voice leading

concerns that substantiate prolongation can be addressed. For this reason, a sketch using

traditional notation for linear analysis appears along with every prolongational network in

this dissertation.

There is nevertheless a theoretical preference for the fundamental bass note at the heart

of the theory constructed in Chapter 2. While I would certainly hesitate to reiterate

Hindemith’s assertion that every chord needs to have a single definitive root,4 in Chapter 2

it was important for the purpose of determining harmonic function and diatonic spelling

to rely upon the chord tone that deviates the least from a key’s center in tonal space. The

apparent root bias of the theory itself therefore also should not be understood to stand in the

way of the contrapuntal view that should underpin our system of prolongational analysis. In

fact, the hierarchization of scale degree functions that was introduced in Chapter 2 and that

forms the basis of our method of root analysis also may contribute to one’s interpretation of

the contrapuntal structure. Indeed, this perspective that tonal function is both a harmonic

and a contrapuntal concern is supported by Harrison 1994 and Agmon 1996b.

2While Hindemith’s writing is perhaps too prescriptive, and his method fails to account for diatonic means
of defining the function of the scale degrees within a chord, his perspective on the matter is still worthwhile.
Indeed, the ability of a chord to retain its root when the bass note changes does tend to break down beyond
seventh chords. For further arguments for Hindemith’s chord-group system and root analysis procedures,
see Harrison 2004.

3For example, my personal bias would lead me to represent a contrapuntal texture with figured bass
rather than fundamental bass.

4Kaminsky (2004) discusses Hindemith’s assertion and the possibility of more than one perceptible root
in polychords. In this section we shall also encounter some chords with ambiguous roots.
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While there should certainly be some interaction between the harmonic and contrapuntal

aspects of prolongation, the determination of a root will not play a role in deciding whether

a passage can support prolongation. We shall discover, however, that those structures for

which the root-finding mechanism falters might also be those that lead away from clear

tonal function.5 Unless some specific feature of the music disambiguates the function of

such chords, no chord with ambiguous root should be placed in a “structural” position on

a prolongational network.6 This single constraint is the extent to which root finding can

determine chordal salience.7 With these less ambitious aims for a theory of chord roots in

mind, we shall now examine some simple schemes that provide a fundamental bass note that

may be used on a transformational network.

Tertian, Quartal, and Overtone Chords

The simplest method of root finding is to rearrange the pitch classes in a chord so that

they proceed by thirds (or by fifth if a note is missing from the interval projection). The

root is always the bottom note in the stack of ascending thirds. While this succeeds in

giving consistent results, as Hindemith points out, it may not always reflect the functional

root of a chord. Harrison (2004) gives the excerpt seen in Figure 4.1 as an example of

this contradiction and its possible derivation from musical gestures such as the ending of

Figure 4.2. Stacking the “add 6” chord from Figure 4.1 in thirds gives the “added” note as

the root.8 Chords such as Cadd 6 may therefore appear in mod-12/mod-7 networks in cases

where there is reasonable support for such an analysis. Another impediment to this method

of root determination is the ambiguity of the root of certain tertian chords such as 3–12

(048) and 4–28 (0369) where the diatonic spelling of the chord alone determines its root.

Because, as we have seen in Chapter 2, diatonic spelling is predicated upon key analysis, a

key analysis is therefore necessary before one can determine the root of such chords.

5Harrison (2004) agrees in this regard, contending that hearing a piece as tonal, regardless of the acoustical
complexity of the tonic (and other structural chords), is dependent upon the analyst’s perception of a“rooted
tonic”.

6We shall see some typical examples of chord ambiguity and possible contexts for their tonal clarification
at the end of this section.

7As we shall discover in Section 4.2, certain features of a chord that help in determining its root can play
a role in support of one’s case for the structural importance of the chord. These are but a few of the many
factors, however, that should play a role in the decision of chordal salience.

8Santa (1999, 44–45) also presents an example of this phenomenon, showing a major seventh chord
functioning as a minor “add 6” chord. This raises the question of under what circumstances the “root” of set
class 4–26 (0358), 4–20 (0158), or 4–27a (0258) is in fact the first note of the ascending tertian ordering. A
root-finding system that gives Harrison’s (1994) “bases” as roots may perhaps satisfy this ambiguity between
tertian root-finding and tonal function. Fortunately, this debate does not require resolution here, as a
fundamental-bass progression that follows the tertian root gives consistent results that allow for arguably
the most legible transformation graphs.
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Figure 4.2: Liszt, Ballade No. 2 in B Minor (1853), Ending

Of course not all chords are organized in thirds, and sonorities that are generated from

other interval projections may even appear within the context of a tonal piece. For the sake

of consistency, we shall use a similar root determination procedure for these chords, if they

are clearly organized as interval projections in pitch space. Hindemith’s root-finding method

prefers fifths over fourths, and his method will give different results than this perspective,

which favors the bottom note of interval projections of any sort. In other words, as long as

the chord is constructed using a single interval, the most consistent fundamental bass note

is the lowest note in the sequence. This applies to quartal and quintal harmonies, semitonal
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clusters, and whole-tone scale segments.9 Fifths seem to be the upper limit of the interval

projection root-finding model, as sixth projections can be expressed as tertian harmonies.

Further, if the chord projects only a generic interval, such as a diatonic pattern of major

and minor seconds or thirds, key analysis should be used to decide the spelling of the chord.

Because tonal considerations may also often play a role in deciding the root of a chord, a

systematic procedure for deriving chord members’ tonal functions may be devised. Using

just intonation as a reference for tonal function, we can determine a “root representative” for

any tonally unambiguous chord.10

Root Representatives

Because we made use of the harmonic series in defining the tonal space outlined in

Chapter 2, we can also use it as a resource for root-finding.11 Table 4.1 outlines the procedure

for determining a chord’s root representative. Because the method given in Table 2.2

sometimes gives rather complex ratios, the first step of the process allows us to replace some

of these more complex 3-limit and 5-limit intervals with simpler ratios that have higher prime

limits. All of the ratios in scale-based JI where r > 32 that are not listed in Table 4.1 are

chromatic intervals, for which we shall assign simpler ratios after examining some examples

below. Each of these replacement intervals has an acoustical basis, but they are not practical

JI tunings for common-practice tonal music.12 Steps 1–3 of Table 4.1 help us to determine

a ratio representation of the chord in lowest terms, and in the fourth step we then perform

an octave reduction to determine the lowest partial of the overtone series from which each

pitch class can be said to arise. In the list given in the fifth step, the intentional placement

of the number five before three corrects for the overtone series’s bias toward major thirds

over minor thirds.13 This root-finding algorithm returns the same results as Hindemith’s in

9The use of whole-tone scale segments within the context of functional harmony may in fact clarify a
functional root. We shall discuss the function and diatonic spelling of the whole-tone scale further when we
examine Table 4.1.

10Hindemith (1942, 101) first used the term “root representative” for the note that may be used as the
root in diatonically ambiguous chords such as augmented triads and diminished seventh chords. I have
appropriated the term in a more general sense here, using it to refer to Hindemith’s procedure of deriving a
fundamental tone from a conglomeration of notes that imply a single harmonic series. The method defined
in the next section (in Table 4.1) is reminiscent of the acoustical basis of Hindemith’s procedure, but far less
comprehensive. Harrison (2004) also invokes Hindemith’s “root representatives”, in support of the conclusion
that pitch-space interval projections take their bottom note as a root.

11Väisälä (1999 and 2002) supports his own prolongational view of post-tonal music by examining how
chords relate to the harmonic series.

12For more on the use of 7-limit consonances to replace 5-limit tunings of seventh chords, see Regener 1975
and Monzo. Further, footnote 20 from Section 1.3 provides some guidance for the introduction of 7-limit
consonances into the JI system outlined in Chapter 2.

13When we ignore this alteration, the results of this root-finding method seem to favor a theoretical view
that is different from harmonic dualism (which is also rooted in JI theory) and more aligned with the view
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most cases, but it is not as comprehensive.14 While it provides definitive results for all tonal

harmonies (including extended tertian chords and diatonic scale segments), the results for

post-tonal sonorities are far more ambiguous. In this section, we shall engage in the useful

(if somewhat tedious) exercise of examining several instances of tertian, non-tertian, and

post-tonal chords and using the method in Table 4.1 to designate a root representative for

each.

Table 4.1: Procedure for Finding a Chord’s “Root Representative”

1. Using the method outlined in Chapter 2, determine the N5 ratios (5-limit JI tunings)
of all members of the chord. If possible, rewrite the chord as a multiple ratio
(r0:r1:r2: . . . :rn), where r < 32. The ratio 32:27 may be replaced with 7:6, 64:45
may be replaced with 7:5, 16:9 may be replaced with 7:4, and 225:128 may be replaced
with 7:4. Extended tertian chords may use even higher prime numbers.

2. If the chord still cannot be represented as a multiple ratio (e.g. 4:5:6:7) or its use is
forbidden by restrictions in the previous step, use Figure 4.3 to find the multiple-ratio
representation of the chord with the lowest prime limit. The chord may not be respelled
to fit a particular set of partials that are spelled differently in the figure.

3. Reduce the ratio so that there is no common factor among all overtones. For example,
12:15:18 has 3 as a common factor, and thus reduces to 4:5:6.

4. Divide each of the integers that represent chord members by 2 until none of the integers
is divisible by 2. For example, the overtone chord 10:12:15:18 (representing a minor
seventh chord) reduces to 5:3:15:9

5. To decide the root, choose the part of the reduced chord that appears earliest in the
following ordered list: 1, 5, 3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31.

One common tonal sonority for which a root representative needs to be determined is

the German augmented-sixth chord (or the Italian sixth, which is a subset of the German

sixth chord).15 According to the first step in Table 4.1, the method in Table 2.2 is to be used

of minor and diminished triads as elided 5–6 motions from the more prominent diatonic triads. Jones (2004)
uses a different method for correcting the harmonic series’s bias against minor thirds. When using the area
that a chord covers on the Tonnetz to measure its instability, Jones alters the angle between the axes on the
Tonnetz to 60◦ so that the distance between notes a major third apart and a perfect fifth appart is the same
as the distance between notes a minor third apart.

14The method described here also resonates with Harrison’s (2004) idea of “root amplification”.
15The fact that German sixths sound like root-position dominant sevenths yet appear to be in first inversion

creates considerable ambiguity in the identity of the chord’s root. The root-finding method in Table 4.1 is
not intended to resolve this ambiguity, but rather to give a consistent result for the purposes of creating a
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Figure 4.3: Diatonic Spelling of the Harmonic Series

to determine the tuning of the chord.16 Suppose that the augmented-sixth chord appears

in the key of C major. Given the tonic pitch class of C major, t = (0, 0, 0), the function

v−1(h−1(yt(zt(8)))) returns the ratio 8/5, v−1(h−1(yt(zt(0)))) gives 1/1, v−1(h−1(yt(zt(3))))

= 6/5, and v−1(h−1(yt(zt(6)))) is 45/32. The ratios between adjacent chord members are

thus 5/4, 6/5, and 75/64. There is no multiple ratio (r0:r1:r2: . . . :rn) where r < 32 that

represents this chord. However, the ratio between pc 8 and pc 6 is 225:128, which may be

replaced with 7:4. Therefore the multiple-ratio representation of this chord is 4:5:6:7. The

fourth step in the procedure reduces the ratio to 1:5:3:7 by dividing out all multiples of two,

and the final step gives pc 8 as the root representative. The procedure also returns the

multiple ratio 4:5:6:7 for dominant-seventh chords, since they contain the interval 32:27.

While the Italian sixth chord will simply be 4:5:7 and have the same root representative as

the German sixth, we should investigate the French sixth to determine which chord tone will

serve as its representative on mod-7 networks. Like the other two augmented-sixth chords,

the French sixth contains pitch-class ratios (relative to 1/1 as tonic) 8/5, 1/1, and 45/32. The

French sixth contains 2̂ as well, which according to the function v−1(h−1(y(0,0,0)(z(0,0)(2))))

is 9/8 of tonic. This chord also contains the ratio 225:128, which can be replaced by 7:4.

This gives the multiple ratio 32:40:45:56, which does not satisfy the condition r < 32. We

thus cannot skip step 2 in Table 4.1 in this case. Hence we must find the lowest prime-limit

multiple-ratio representation of the chord. In Figure 4.3 we can find a French sixth one

octave above the 4:5:6:7 German sixth, at 8:10:11:14 (32:40:45:56 becomes 32:40:44:56 with

common factor 4). In the final two steps of the process, this ratio reduces to 1:5:11:7, and (in

fundamental-bass progression. Indeed, it is my contention that many chords in tonal harmony do not have a
single definitive root, even though we shall be assigning a root to represent these chords in mod-7 networks.

16Much of the tuning procedure in Table 2.2 was encapsulated into the mathematical functions that were
introduced in Section 2.4. We may thus use these functions to generate the tuning of each pitch class in the
chord.
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C major) pc 8 thus represents the fundamental bass of this chord as well. What, then, of the

conception of the French sixth as a sort of V4
3 with a lowered fifth? Certainly this method

denies the tertian root of this chord its status, even in cases where the chord is used in root

position as a dominant. Nevertheless, consistent results are returned for all augmented-sixth

chords; and if it seems contrary to a reasonable analysis of the music to call the altered note

the root of an inflected dominant seventh, the label D 7
[5 is not forbidden in mod-7 networks.

As we saw in Chapter 2 there are two distinct tunings of the half-diminished seventh

chord in scale-based JI. Neither tuning (25:30:36:45 or 45:54:64:80), however, satisfies the

conditions of step 1 in Table 4.1. Because the vii∅7 tuning of this chord contains the

interval 32:27 (64:54 reduced to lowest terms), we can replace it with 7:6 and use the outside

interval from the ii∅7 tuning (9:5) to arrive at the multiple ratio 5:6:7:9 (45:54:64:80 becomes

45:54:63:81 with common factor 9). The representative note of this chord (once it is reduced

to 5:3:7:9) is thus its traditional tertian root. In step 5 of Table 4.1, what looks like a

sequence of odd numbers has 5 and 3 reversed. This change of ordering results in returning

the traditional root of any tertian chord that begins with a 6:5 minor third.

The fully-diminished seventh chord, of course, will take its representative from its tertian

root, once its diatonic spelling has been established. It will nevertheless be worthwhile

to determine if the procedure in Table 4.1 returns the tertian root of this chord as its

representative. The tuning of the members of the vii◦7 chord as is returned by the tuning

method in Table 2.2 is (relative to 1:1 as tonic) 15:8, 9:8, 4:3, and 8:5. While this tuning of

the chord also does not form a multiple ratio with r < 32, we can, as we did with the half-

diminished seventh chord, substitute 7:6 for the 32:27 interval in the chord. This gives 5:6:7

for the first three members of the chord. Although the fourth member of the half-diminished

seventh chord is 9:5 from the first note, the fourth member of the fully-diminished seventh

chord is 128:75 from the first note, and thus must also be replaced. In Figure 4.3 one octave

above 5:6:7, we can find a correctly spelled replacement for the final pitch class in the chord.

The chord will thus be represented by 10:12:14:17, and can be reduced to 5:3:7:17, with its

first note as its root representative.

Now that we have used our JI-based root-finding scheme to define the root representatives

of most typical tonal chords, we can now turn to the examination of some non-tertian

and diatonically ambiguous chords that may appear in extended-tonal music. First, let

us examine some non-tertian chords, beginning with a three-note quartal chord. The set 3–9

(027) can be represented by the multiple ratio 9:12:16, or, when stacked in fifths, 4:6:9.

Because these reduce to 9:3:1 and 1:3:9 respectively, our root-finding procedure always

returns the same root for this set class, preferring stacked fifths over stacked fourths, in

contradiction to our convention of using the bass note of any interval projection. This fact
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supports my claim that the procedure in Table 4.1 is similar to Hindemith’s root-finding

method. The same situation obtains for larger quartal/quintal chords (e.g. 4–23 (0257) has

multiple ratios 27:36:48:64 and 8:12:18:27). Chords may also be built by stacking up seconds.

The diatonic set 7–35 (013568A) as a multiple ratio tuning is 24:27:30:32:36:40:45. Because

r > 32 here, we must increase the prime limit to find its representative. Without the r < 32

requirement, the root representative of the set would indicate that the Lydian mode is the

primary organization (“root position”) of the sonority. The only diatonic sets in Figure 4.3

are 16:18:20:21:24:27:30 and 16:18:19:21:24:26:29. The first of the two options has the lower

prime limit, which implies Ionian as the set’s “root position”.

While the diatonic collection and chords built with stacked fourths and fifths are

not diatonically ambiguous, other interval projections are, including augmented triads,

diminished seventh chords, and clusters of semitones and whole tones. Further, many chords

that are not interval projections are spelled differently based on the scale degree on which

they are built.17 In all of these cases, the diatonic spelling of the collection must be taken

from the musical context (key analysis) before it can be located on the overtone series.

For example, a three-note semitone cluster could be an expression of [7̂ \7̂ 1̂, spelled as an

augmented unison and a minor second, or 7̂ 1̂ [2̂, spelled as two minor seconds. In both

cases, since r > 32, we must find the lowest prime-limit instance of the set with the correct

diatonic spelling in the overtone series. With a prime limit of 11 in both cases, these two

multiple ratios are 21:22:24 and 11:12:13, respectively, giving 1̂ as the representative in each

case. With whole-tone clusters, care must be taken to replicate the spelling of scale degrees

in Table 2.1, including correct placement of the diminished third. For example, the melodic

minor scale has five out of six notes of the whole-tone scale between [3̂ and 7̂. Adding [2̂ from

the Phrygian mode gives a complete whole tone scale, with a diminished third between 7̂

and [2̂. The multiple ratio 13:14:16:18:20:22 has two potential diminished thirds (augmented

sixths) in it: 16:14 and 13:11 (26:22).18 This ambiguity and the exaggerated wideness of the

diminished third 26:22 suggests that using the whole-tone scale in the next octave of the

overtone series might be more successful. With the multiple ratio 17:19:21:24:27:30, none

of the major seconds exceeds 9:8 and the single diminished third 17:15 is fairly close to

the 256:225 5-limit diminished third in Table 2.1. The root representative of this selection

of overtones is 5̂ of the “melodic Phrygian” scale, implying a potential dominant function

17Recall that Table 2.2 included a proviso in Rule 1 that tertian chords may override any non-tertian
spellings in Table 2.1. In fact, any diatonically unambiguous chord may also override any conflicting spellings
in Table 2.1, while diatonically ambiguous chords may not. I enumerate the diatonically unambiguous chords
near the end of this section.

18Recall the use of 8:10:11:14 for the French sixth chord, implying a diminished third between 14 and 16.
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for the sonority.19 However, this also implies that music that does not define the key center

diatonically, but rather restricts itself to the whole-tone collection, using emphasisis to define

centricity cannot be analyzed using this method.

Further, there are pitch-class sets for which diatonic spelling is not sufficient for finding a

root representative. One example of this is 3–3 (014). There are three possible spellings for

this set, each involving a chromatic interval, all of which have a potential tonal use. Expressed

based on one possible tonal use of the spelling (using scale degrees), the three spellings

are [3̂ \3̂ 5̂ (containing an augmented unison), 5̂ [6̂ \7̂ (containing an augmented second),

and \7̂ 1̂ [3̂ (containing a diminished fourth). In each case there are multiple locations on

the overtone series where the chord can be found as spelled, often giving different answers

about the set’s representative note. Because the overtone series is useful only for providing

definitive tunings for diatonic intervals, our method of root-finding has difficulty with chords

that contain chromatic intervals with little inherent diatonic context. Restricting the tuning

of chromatic intervals to particular overtone combinations allows for a definitive decision

among these conflicting solutions. Augmented unisons should always be 20:19, augmented

seconds are 15:13 or 20:17, depending on the other notes in the chord, diminished thirds are

8:7 or 17:15, diminished fourths are 13:10, and augmented fourths are 7:5. The (014) chord

and all others with uncontextualized chromatic intervals will nevertheless remain in a class

of “tonally ambiguous” chords that we shall bar from analytical placement in a structural

position on a prolongational network unless the musical context defines the use of that chord.

An example of such a context-defined chord in this category is the diminished-seventh chord.

When used in tonal contexts, the diatonic spelling of the chord defines its root and the

location and tuning of the chromatic interval in it (A2). Thus, provided a diatonic framework

for its use, a diminished seventh chord may be prolonged. Likewise, the set 3–3 (014), once

contextually given its tonal function, may also be prolonged.

While the division between diatonically ambiguous and tonally ambiguous chords is

hazy, the set of diatonically unambiguous chords is well defined. The only diatonically

unambiguous set classes (including their inversions) are given in Table 4.2.20 All other

chords have more than one (theoretically) potential function in diatonic space (using the

scale degrees found in Table 2.1) when spelled in different ways. For example, the major-

minor seventh chord 4–27b (0368) may be spelled either 5̂, 7̂, 2̂, 4̂ or [6̂, 1̂, [3̂, ]4̂. Further,

19To enhance this inherent dominant function, this collection could be organized in thirds to form V
[13
9

[5
.

20Santa (1999) and Jones (2002) both also categorize the set classes according to their ability to support
alternative spellings. My list differs somewhat from theirs because my purpose is to suggest the circumstances
under which we can interpret a chord as a diatonic-scale-based harmonic entity regardless of its participation
in linear chromaticism. In this way, we may even extrapolate diatonic scales from chromatic occurrences of
diatonically unambiguous chords. Rule 4 from Table 2.2 accomplishes this task.
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the minor-major seventh chord 4–19a (0148) may be spelled either 1̂, [3̂, 5̂, 7̂ or [6̂, 7̂, [3̂, 5̂.21

The only diatonically unambiguous chords are thus those that can be represented within the

uninflected diatonic collection and that contain one or more perfect fifths and no tritones.

Unambiguous chords have a single root representative, regardless of bass note or spacing.

Interval projections that are not diatonically ambiguous are represented by the bottom note

when they are arranged using the generating interval. Diatonically ambiguous chords require

key analysis before selection of the root representative is possible. Though this distinction

is useful for root finding, it does not necessarily distinguish chords’ function or salience in

a musical texture. Even diatonically unambiguous chords can be used in unusual ways as

transient chords. For example, 3–7 (025), while normally an incomplete minor-seventh chord

with pitch class 2 as its root representative, can appear as a triad with pitch class 0 as its

root and two non-chord tones that will resolve to pitch classes 4 (or 3) and 7. It is therefore

important for the root-finding method presented here to be reserved for sonorities whose

tonal function is not clarified by the musical context. Note, however, that unusual uses of

these diatonically unambiguous chords do not negate their ability to contribute to a sense of

key center.

Table 4.3 codifies the procedure we have been building in this chapter for performing

analysis using mod-7 networks. The analytical apparatus rests on key analysis, and the

ordering of the first three steps is designed to ensure a consistent reading of tonal centers for

all tonal and extended-tonal literature. The next section will elaborate upon the last step

in the analysis procedure, and provide a set of criteria from which one may make decisions

about possible prolongations.

4.2 Finding Structural Chords

Perhaps the most important part of prolongational analysis is the determination of

structural and transient verticalities. Even in tonal music, it can be difficult to render

decisions about what is structural and what is not. For example, Wagner (1995, 166–168)

cites a disagreement between Forte and Gilbert (1982, 115) and Laskowski (1984, 116) about

what chords are structural in the opening bars of the second movement Mozart’s Piano

21At least two chords listed in Table 4.2 do in fact have the potential for multiple interpretation.
Specifically, 3–7 (025) and 4–26 (0358) may be respelled as non-traditional augmented-sixth chords. (See
Harrison 1995 for further treatment of the more extravagant augmented-sixth chords of chromatic harmony.)
In the rare and easily identifiable cases where music uses these chords in this way, the rules in Table 2.2
allow the analyst to retain the non-tertian spelling. The typical examples of multiple interpretation using
augmented sixths, however, also hinge upon the reinterpretation of a tritone. For this reason, we shall
continue to consider members of interval class 2 as stable diatonic entities.
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Table 4.2: Diatonically Unambiguous Sets

2–5 (05) (perfect fourth/fifth)
3–4 (015) (incomplete major-seventh chord)
3–7 (025) (incomplete minor-seventh chord)
3–9 (027) (two stacked fifths)
3–11 (037) (minor/major triad)
4–10 (0235) (minor tetrachord)
4–11 (0135) (major/Phrygian tetrachord)
4–14 (0237) (incomplete minor ninth chord)
4–20 (0158) (major seventh chord)
4–22 (0247) (incomplete major ninth chord)
4–23 (0257) (three stacked fifths)
4–26 (0358) (minor seventh chord)
5–23 (02357) (minor/major pentachord)
5–27 (01358) (major/minor ninth chord)
5–35 (02479) (pentatonic scale)
6–32 (024579) (Guidonian hexachord)

Sonata in D Major, K. 311, shown in Figure 4.4.22 Forte’s and Gilbert’s reading appears in

Figure 4.4(b), while Laskowski’s analysis is shown in Figure 4.4(c). While Wagner presents

a third, more nuanced reading of the passage, the decision of what is structural in this and

many other excerpts is not straightforward. While tonal music offers a well-defined harmonic

syntax to guide the analyst, in music where this syntax breaks down such decisions become

far more difficult and we must rely on subjectivities to a greater extent. Keeping this in

mind, I shall provide guidelines to help determine what is and is not structural. These

considerations are not intended to replace an analyst’s intuition and musical experience,

but rather they are designed to help guide one’s attention to certain features of the music.

Among the considerations for asserting chordal salience that we shall discuss are functional

connections, motivic connections, and acoustical arguments for chordal salience.

Acoustical Stability

In the previous section we explored an acoustical basis for chord organization with the

intent of finding a systematic way of determining fundamental bass notes. We can also use

the relationships of harmonic structures with these systems of acoustical organization as

22Wagner also presents Salzer’s (1952, Vol. 2, p. 50, Ex. 183) more ambiguous reading of the passage along
with these two clearly contradictory analyses.
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Table 4.3: Analysis Procedure for Creating Mod-7 Networks

1. Root analysis: Defer determination of the roots of diatonically ambiguous chords until
after step 2.

2. Key analysis: Use chord roots and qualities and fundamental bass patterns along with
one’s knowledge of harmonic practice to determine the key for every timepoint in the
piece.

(a) All diminished-seventh chords and major-minor seventh chords imply toniciza-
tions of some key (perhaps simply the prevailing key).

(b) Secondary dominants and diminished-seventh chords require a change of key for
as long as the chord is sounding.

(c) Secondary progressions and modulations require a change of key through the last
dominant in the secondary key or the last chord before the pivot chord or direct
modulation.

(d) Some pieces may begin and end in different keys, even if the analyst will eventually
want to read the background of the piece as an auxiliary cadence. (For more on
the analysis of directional tonality, see Section 5.2.)

3. Diatonic spelling: Spell every pitch in the piece based on the procedure given in
Table 2.2. Use the key-based diatonic spelling to make final decisions on ambiguous-
root chords.

4. Pervasive fluency: Make decisions about possible prolongations and use pervasive
fluency to see how the prolongational passages may be heard as transient.

one of the considerations in chords’ relative salience. For example, holding all other factors

constant, a chord that is organized as an interval projection in pitch space affords more

weight from its acoustical stability than a chord that is only an interval projection by virtue

of its constituent pitch classes. Consider, for instance, the spacing of the fifth projection

in Figure 4.5(a) as opposed to a more muddled spacing of the same five pitch classes in

Figure 4.5(b). Because many other factors play into chordal salience, however, we cannot

assert that acoustically more stable chords will necessarily play a more structural role in a

prolongational analysis than less stable chords. I can certainly imagine instances in tonal

music where the most convincing analysis shows the exact opposite situation: for example,

a tonic chord in first inversion appearing as a passing chord between a ii65 chord and a vii◦65

chord, or the consonant triads that result as passing chords in an omnibus progression.

Regardless, let us now examine a method for measuring the relative acoustical stability of
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Figure 4.4: Two Conflicting Readings of Mozart, Sonata in D Major, K. 311, II, mm. 1–4

various chords, keeping in mind that this is only one of several considerations that may

support a prolongational reading.

While we shall consider interval projections in pitch space to be acoustically stable, we

can determine relative degrees of stability using the same harmonic model that we used for

choosing root representatives.23 Given a harmonic-series representation of a chord as derived

from the method in Table 4.1, the prime limit of its multiple ratio provides a measure of

23Recall that, for the purpose of finding a root representative, Table 4.1 and Figure 4.3 may be used to
conceptualize chords as overtones above a single fundamental.
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Figure 4.5: Two Voicings of an Interval Projection with Different Stability

the chord’s relative degree of acoustical stability. The lower the prime limit, the more

stable the chord (regardless of cardinality). For example, holding all other factors constant,

this perspective deems a major triad with prime limit 5 as more stable than a dominant-

seventh chord with prime limit 7. Likewise, when used as chords, the diatonic collection

(16:18:20:21:24:27:30) with prime limit 7 is more acoustically stable than the whole-tone

collection (17:19:21:24:27:30) with prime limit 19. Interestingly, both the diminished-seventh

chord and the augmented triad are more unstable than the entire diatonic collection according

to this method of measuring stability. The overtone method also supports the notion that

projections of fourths and fifths are indeed highly acoustically stable, as these chords all have

prime limit 3 (or 5 or 7 when they are tuned from the JI diatonic scale rather than from

pure fifths).

We can therefore use a chord’s prime limit as an integer value defining the instability of

any chord. Holding other factors constant, the higher the prime limit is, the more acoustically

unstable the chord is. Thus, major and minor triads have an instability value of 5, along

with major and minor seventh chords, while dominant and half-diminished seventh chords

have instability value 7, and fully diminished seventh chords (along with dominant flat-

ninth chords) have instability value 19. Unless a chord is diatonically unambiguous,24 one

must determine the key and spell the chord according to Table 2.2 before applying the

overtone method. In the sense that the tonal context (the key) determines the spelling and

function of these diatonically ambiguous chords, the tonal context also defines their relative

stability.25 The most likely candidates for prolongation are the diatonically unambiguous

24In the previous section we defined the diatonically unambiguous sets as any set that can be represented
within the uninflected diatonic collection containing one or more perfect fifths and no tritones.

25A chord’s stability, then, is judged based on its internal relationships in the tonal space defined in
Chapters 2 and 3. Jones (2004) provides another useful chordal-stability model measured using tonal space.
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chords. Regardless of their prime limit, these should therefore be considered to have the

lowest possible instability value (i.e. 1). This is the only exception to taking the prime limit

as instability measure.26

One final acoustically defined measure of a chord’s stability is the scale degree upon

which it is built. In tonal music, triads built on 1̂ and 5̂ typically take on structural roles and

rarely prolong triads built on other scale degrees. In extended tonality, a composer could

establish an alternative hierarchy of roots while maintaining the same principles. A simple

but decidedly radical example of this is Lendvai’s (1971) “axis system” for the analysis of

Bartók’s music, where a prolongational analysis may favor tertian chords built on 1̂ and ]4̂/[5̂,

followed by 5̂ and ]1̂/[2̂, etc. While “axis tonality” provides a useful analogy to elucidate

the idea of alternative scale-degree hierarchies, a more straightforward reorganization of

scale-degree functions will perhaps carry more weight toward the assertion of prolongation.

Since, this idea of the relative stability of root scale degrees is at least as much a functional

measure of chordal salience as it is an acoustical measure of stability, we shall now explore

tonal function as a basis for asserting prolongation.

Functional Equivalence

In tonal analysis, the connection between two structural chords can indicate either

prolongation (meaning the chords share the same function) or tonal motion (meaning the

chords are connected by arpeggiation or passing motion). When tonal function is not clear,

however, these types of prolongations are much more difficult to assert. It may be wise, if

also restrictive, to look with skepticism at prolongation connecting chords of two different

types in post-common-practice tonality. Therefore, the analyst must address the issue of

whether and how harmonic function is established in the music.

Since the question of how the music creates a context for the perception of chord function

is perhaps the most important the analyst must address, this will form the first of the list of

criteria for evaluating prolongation that appears at the end of this section. We shall address

the absence of harmonic function as an impediment to prolongation further once we have

considered the interaction of motive and tonal hierarchy.

26This may actually be an unnecessary provision, as all diatonically unambiguous sets already have low
prime limits.
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Motivic Significance

Perhaps the most controversial aspect of any argument for prolongation is the role that

motives play in the assertion of structural tones or chords and prolongation.27 Santa (1999)

advocates the use of motives to help define structural points in his associational model of

levels for post-tonal diatonic music. As Santa points out, however, this is an entirely different

kind of hierarchy than a system of prolongational levels. Since our prolongational model for

extended tonality requires a basis in traditional prolongational theory, our model must accept

a more nuanced view of the interaction of motive and prolongation. There are two basic roles

a motive or theme can play in the perception of prolongation.

First, the return of a motive can distract from a sense of prolongation. This view can

support the idea of the recapitulation in a binary form as an interruption rather than a

simple progression from dominant back to tonic. The idea of motivic return as interruption

also encourages the analyst to support claims for prolongation with tonal and harmonic

structures rather than motivic returns. For this reason in the prolongational model outlined

here, motivic significance, like acoustical stability, must form only part of any claim for

prolongation.

Second, the return of a motive in special cases may form part of an argument for the

termination of a prolongational span. In the absence of the return of a functionally or

acoustically stable chord, the return of motivically significant material at the termination of

a contrapuntally fluent passage may signal the end of a prolongational span. Once again, such

an assertion of prolongation would be aided by the presence of other contributing factors.

Because the factors that contribute to prolongation may interact in different and unique

ways, the analyst must weigh the contributions of each factor and make an informed

subjective decision. Table 4.4 offers a rubric for evaluating a potential prolongation. In

association with Table 4.3 one can use Table 4.4 to create a mod-7 prolongational network

of a tonal or neo-tonal work. In the next section, we shall examine some features of a piece

that may hamper prolongational analysis.

27For background on this issue see Burkhart (1978). My view of the use of motives within prolongational
analysis agrees with Cohn’s (1992) reevaluation of the issue.
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Table 4.4: Considerations for Judging a Single Prolongational Span

1. Does the passage begin and end on the same harmony? If not, what allows the
beginning and terminating chords to be heard as having the same tonal function?
Provided a context for hearing function, some fluent progressions may connect the end
of one prolongational span to the beginning of another span with a different harmonic
function.

2. Are the beginning and ending chords at least as acoustically stable as the intervening
chords? If not, how are they distinguished from the prolonging chords as being
structural?

3. Does the passage exhibit contrapuntal fluency? Do passing and neighboring motions
connect the prolonged chords, at least in the pitch-class counterpoint? If not, is
there another means of connecting the prolonged chords, e.g. through chord patterning
(ABCBA, ABCDABCDA, etc.)?

4. Account for all “chromatic notes” that come from outside the main collection of the
passage or work. They must be non-chord tones or part of a modulation or tonicization.

5. How do motives and themes contribute to or detract from the prolongations?
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4.3 Impediments to Prolongation

The previous section outlined a largely intuitive procedure for finding prolongational

passages, culminating in the rubric in Table 4.4 that allows the analyst to evaluate the

previously outlined criteria for prolongation as part of a nuanced view of their interaction.

Because of the subjective nature of the endeavor of evaluating prolongation, there are few

caveats in the list of criteria for asserting prolongation. There are nevertheless factors

which may detract from a prolongational view of music on the fringes of tonal practice.

An investigation of these factors will help us to know early on in the analytical process

whether a tonal analysis would be fruitful.

Chord Variety

Traditional tonal music uses a relatively small number of set classes (around ten,

depending on the style of music).28 There is often a wider variety of set-class types present

in atonal music, making it difficult for the listener to determine any hierarchy among the

harmonies. Because tonal music has evolved over a considerable amount of time, and is a

culturally learned style, it is easy for experienced listeners to make sense of the complex

relationships of the ten tonal sonorities. Whereas much of the extended-tonal repertoire uses

a larger number of different chord types, in many cases these are built upon the traditional

tonal sonorities in the form of extended-tertian chords, polychords, or color chords (triads

with added timbral notes).29 While it is still possible to find prolongational structures in

music with an entirely new harmonic vocabulary, a wide variety of new chords with no

clear hierarchy among them may form an impediment to finding prolongation. One tool an

analyst may thus utilize in order to contribute to the evaluation of a prolongational analysis

of extended-tonal or post-tonal music is a list of distinct set classes in the work and a list of

distinct set classes found in structural positions of the work.

Absence of Harmonic Function

We have examined how prolongation may be posited without traditional harmonic

function, but the complete absence of a centric pitch class and some rudimentary harmonic

28The ten primary chords of common-practice tonal music are 3–10 (036) (the diminished triad), 3–11a
(037) (the minor triad), 3–11b (047) (the major triad), 3–12 (048) (the augmented triad), 4–20 (0158) (the
major seventh chord), 4–25 (0268) (the French augmented-sixth chord), 4–26 (0358) (the minor seventh
chord), 4–27a (0258) (the half-diminished seventh chord), 4–27b (0368) (the dominant seventh chord or
German augmented-sixth chord), and 4–28 (0369) (the fully diminished seventh chord). Others can usually
be accounted for as arising from leaving out pitch classes from one of the ten sets, using non-chord tones, or
extending the chord upward by thirds.

29Harrison (2004) provides a useful summary of these extensions of triadic harmony.
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syntax can succeed in destroying any sense of prolongation. Let us now enumerate some

basic kinds of tonal functions that contribute to a sense of tonal hierarchy. First, scale

degree functions, as defined by combining the tonal space posited in Chapters 2 and 3

with traditional fundamental-bass harmonic theory, are essential to establishing harmonic

function. A second type of tonal function is a chord’s degree of acoustical stability, or, in more

traditional terms, a chord’s relative consonance or dissonance. Further, a note’s function

can be distinguished as being diatonic or chromatic, and a passage can take on a structural

or transient role based on the presence of diatonic or chromatic harmonies (among other

factors). Other rudimentary harmonic functions we have discussed include the prominence

of two or three different fundamental-bass notes serving as “poles”, such as Bartók’s “axis

harmony”. One last type of harmonic function that follows from the idea of a“tonal polarity”

is harmonic dualism. Such a set of harmonic functions could be fulfilled by a synthetic system

of upward and downward interval projections, such as quartal harmonies, or by replacing the

normal tonic/phonic inversional pair with some other inversionally asymmetrical set class.

Not all of these primary tonal functions need to be present for prolongational analysis, but

the less one can find discernable harmonic function, the less likely one will be able to find

prolongation.

Absence of Reference Collection

Most of the music addressed by our theory of prolongation in extended-tonality has a

diatonic scale at its core, no matter how chromatic the musical texture is. Without some

“diatonic” reference, the distinctions that define many of the rudimentary tonal functions we

have just enumerated disappear. Scales other than the diatonic major/minor system that we

have been studying may also be able to create quasi-tonal prolongational structures. Or they

may exist within a largely tonal piece as“digression”prolongations of the sections that return

to a more stable tonal language. Without a scale on which the music is based, the possibility

of finding prolongation quickly diminishes. It may thus be wise to take a conservative stance

regarding the reference collections that we shall accept as admitting of prolongation. Straus

(1987) was skeptical about prolongation in non-tertian harmony as well. The clouding of

the distinction between linear and harmonic elements (non-tertian harmony) is certainly a

possible impediment to prolongation, but a much more devastating blow to the possibility

of a hierarchical structure is non-diatonic music. Without a reference collection, there is

no chance of creating harmonic/melodic distinctions to satisfy any of Straus’s criteria for

prolongation.

In the next chapter we shall use the conditions for prolongation in Table 4.4 to aid in

the analysis of two extended-tonal works by Ravel. First, we shall examine works where
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the prolongation itself is not problematic in order to show how transformational analysis of

enharmonic progressions and directional tonality can support the interpretation of dramatic

subtext in two Wolf songs.30 Then, the procedure for diatonic interpretation in Chapter 2

will serve to create a mod-7 network of the famous chromatic opening to Wagner’s Tristan

und Isolde. Finally, our procedure for finding prolongation will contribute to an analysis

of two Ravel piano works, one displaying non-tertian functional harmony, and the other

displaying non-tertian harmony lacking traditional tonal function.

30We shall also explore how both enharmonic progressions and directional tonality are nevertheless
excursions from common tonal practice.
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CHAPTER 5

ANALYTICAL EXAMPLES

In the previous four chapters, we have examined how diatonic scale theory, mod-12

and mod-7 group theory, transformational networks, and basic paradigms of prolongational

hearing may work together to form a tonal view of the problematic passages of late

nineteenth-century and early twentieth-century tonal music. In this chapter, we shall

apply these theoretical approaches in various combinations to musical examples that feature

extended tonal techniques. First, we shall explore how the diatonic spelling of tonal

music according to scale-degree function breaks down in music that involves enharmonic

progressions. This confusion among normally autonomous scale degrees will offer a chance to

find dramatic subtext in a Hugo Wolf lied.1 Then, we shall discuss how a tonal perspective

may be applied in various ways to a second Wolf song that begins and ends in different

keys. In such cases, the prolongational and transformational approaches both offer different

and useful tools to help the analyst to interpret the music. A third application of the

theories examined in this dissertation for the analysis of nineteenth-century chromatic music

is the elucidation of highly chromatic passages where the harmonies transcend traditional

tonal function. Using the spelling guidelines in Table 2.2, we shall find two viable diatonic

interpretations of the famous opening of Wagner’s Tristan und Isolde, and we shall select one

for prolongational analysis.2 The final problematic repertoire that we shall address using the

groundwork laid in the previous four chapters is the neo-tonal music of the early twentieth

1For analyses of Wolf’s songs, including the two treated here, and a theoretical discussion of the features
of Wolf’s musical style, see Stein 1985. For more a extensive discussion of Wolf and the scholarship that
treats his life and music, see Jefferis 2004.

2Mitchell (1967) provides a convincing prolongational analysis of the entire Tristan Prelude. This prelude
has historically been a proving ground for the capability of tonal theories in interpreting chromatic harmony,
or, in the words of Wason (1985, 90), “the touchstone for any system of harmony aspiring to legitimacy”.
To follow the extensive historical bibliography of theoretical treatment of Wagner’s chromatic harmony in
Tristan, see Hyer 1989. Harrison (1994, 153–7) and Smith (1986) both offer a functional analysis of this
passage, and Rothgeb (1995), Forte (1995), and Rothstein (1995) discuss the tonal origins of the enigmatic
“Tristan chord”. Lewin (1996) discusses the symmetry of the prelude’s transformations in twelve-tone equal
temperament, and Douthett and Steinbach (1998) build upon this analysis. Bailey (1985) proposes a“double-
tonic complex” to explain the tonal structure of the entire opera, and Hyer (1989) uses neo-Riemannian
theories (including the Tonnetz ) to offer a renewed tonal view of the opera. My own analysis in this chapter
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century. In order to demonstrate the prolongational reading of a work with non-functional

passages, we shall create a prolongational network for the first of Ravel’s Valses Nobles et

Sentimentales. Finally, the parsimonious voice leading in “Ondine” from Ravel’s Gaspard

de la Nuit will allow for a prolongational reading of that primarily non-functional and non-

tertian work.3

5.1 Enharmonic Progressions in Wolf’s “Und steht Ihr früh”

Through analysis of the song, “Und steht Ihr früh am Morgen auf vom Bette” from

the Italianisches Liederbuch, we shall examine how mentally differentiating enharmonically

equivalent chords or pitches can add a layer of meaning to the interaction of music and

text. In Section 3.1 we explored the possibility of an inherent phenomenological confusion in

enharmonic progressions. Specifically, at the end of such a passage it may initially be unclear

whether the music has moved to another tonal region, or whether it has returned to where

it started. This perceptual ambiguity between moving away from and returning to tonic

unlocks certain interpretive aspects of this song; it represents a“hermeneutic window”where a

dramatic subtext can enter into the musical interpretation.4 Distinguishing between C and B]

may seem only to be an intellectual exercise. Our investigation of the enharmonicism in this

music, however, not only offers interpretive insights, but also suggests that enharmonicism, by

thwarting the diatonic background, presents fundamental structural challenges to common-

practice tonality beyond ordinary chromaticism. The spelling rules at the core of our theory

and the mod-7 networks that graphically interpret them allow us to make this distinction

clear.

Figure 5.1 presents the score to this song in which Wolf sets Paul Heyse’s translation of

an Italian text. Figure 5.2 provides an analysis of the harmonic structure as encapsulated in

a transformational network, and an English translation of the text appears in Figure 5.3. In

Figure 5.2, the transformation between levels from the E-major tonic chord at level one to

the initial tonic chord in level two is by (0,0). The ordered pair (0,0) between the levels, then,

indicates that no transposition operation has taken place. The surface-level E chord ascends

by three major thirds to the E chord that completes the cycle. To verify that these three

transformations return to an E-major chord, we add the first numbers in the ordered pairs.

Four (from E to A[) plus four (from A[ to C) plus four (from C to E) is twelve half steps.

is designed not to generate a new perspective on the Tristan Prelude, but instead only to resonate with and
support certain aspects of many of these wonderful approaches to this extraordinary work.

3For a prolongational view of many of Ravel’s works, and an examination of earlier tonal approaches to
Ravel’s music, see Chong 2002.

4Kramer (1990) first coined the term “hermeneutic window”.
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As in any twelve-tone transposition operation, the operation is addition modulo twelve. The

result of our addition, twelve, thus reduces to zero because of octave equivalence. Hence we

know that, at least in terms of twelve-tone equal temperament, both the first and fourth

chords are equivalent E-major triads.

If there is no enharmonic shift involved, we can also expect all of the second numbers in

the ordered pairs to add up to zero, when reduced modulo seven. Here, the numbers two,

two, and two add only to six. This tells us that we do not finish on the same diatonic

scale step as where we began. In this mod-seven representation of scale-step intervals

the transposition operation T6 is equivalent to T−1 (just like in the familiar mod-twelve

universe T11 is equivalent to T−1). We are now one diatonic step lower than the initial E

chord, and thus theoretically on D]] instead of E. The arrow that returns from this second

“E” back to the E on level one thus cannot be (0,0). We must transpose up one diatonic

step (by a diminished second) to return to the E-major triad on level one. This explains

the transformation by zero half steps and one scale step accompanying that arrow. The

low-numbered levels in mod-7 prolongational graphs, then, show how, at some degree of

abstraction, certain chords that are spelled differently at the musical surface are equivalent

at this more abstract level.

This process of reconciling surface-level transformations with the large-level tonic chord

will therefore generate all arrows in these graphs that point from a higher-numbered level

back to a lower-numbered level. When chords on the two levels are diatonically different,

they will be indicated by a transposition with zero as the first number and one or six as the

second number. An ordered pair of (0,1) indicates that the progression has drifted down by a

diatonic step, and must be shifted back up to be completely equivalent to the starting pitch

level. An ordered pair of (0,6) indicates that the progression has drifted up by a diatonic

step, and must be shifted back down to be completely equivalent to the starting pitch level.

In the present case, this song only drifts downward diatonically, and therefore (0,6) will not

be seen in the transformational graph.

The text of the song concerns the aspects of a woman’s daily activities that underscore

her beauty, and how her beauty seemingly affects or enhances aspects of the world around

her as well. The final four lines of the poem focus on how God has blessed the woman with

her beauty, and thus has accomplished great works through her beauty. The immediacy of

the simple texture, dominated by arpeggiated major chords and pedal points, underscores

the primary focus of the poem’s description: beauty, as found in both the woman and nature.

The repeated progression by ascending major third mirrors the positive transformations that

the woman’s beauty effects upon the morning: clearing the skies, bringing the sun into the

heavens, drawing angels to her, and brightening the lamps at church.
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I would be satisfied to leave my interpretation there, as indeed the simplicity and

directness of both the music and text are, in my mind, the source of their beauty. The

fact that the major third cycle results in diatonic drift, however, can further enhance one’s

understanding of the poem’s structure. Although the poem is a single stanza, Wolf’s

musical setting clearly organizes the text into three sections. The first involves rising in

the morning, the second moves the setting to the church, and the third serves to summarize

the text, providing a reason for the miraculous effects that the woman’s beauty has on her

surroundings. Whereas the first two sections convey a storyline, describing transformations

in nature, the third section is more static, having arrived at a dramatic plateau built on the

woman’s beauty.

This structure is contradicted somewhat by the harmonic activity, where the only point

at which Wolf breaks free from pedal point technique is at the end of the most active parts of

the text. There is a dramatic increase in harmonic rhythm that begins in line 9 of the poem

at m. 20 and concludes with the authentic cadence in m. 30 that starts line 14. Perhaps

this “harmonic crescendo” in the music signifies a welling up of emotion on the part of the

narrator resulting from the beauty he is describing.

Although the static quality of the music accompanying line 14 is virtually the same as

in lines 1 and 6 (mm. 1 and 14), both the authentic cadence that initiates line 14 and other

more complicated factors create a sense that this part of the music is more static than in

lines 1 or 6, thus matching the textual stasis. In this regard, the transformational graph in

Figure 5.2 clearly shows how diatonic spelling enhances this musical stasis. Not only does

the downward diatonic drift stop around the same time the harmonic activity increases, but

more importantly it seems to “settle down” to the final diatonic level where it remains during

the entirety of the more static third part of the song. This “settling in,” in my view, comes

from an important musical contrast. The sudden shifts by ascending major third in the first

section cause unexpected downward diatonic slips, whereas the more functional progression

connecting C (chord 6) and E (chord 16) at the end of the second section enables a smoother

transition into the lowest diatonic position of the tonic E.

Figure 5.4 translates the transformational network in Figure 5.2 into Schenkerian prolon-

gational notation. While the prolongational sketch in Figure 5.4 does not easily show both

the change in diatonic spelling and the prolongation through the enharmonic progressions,

the transformational network in Figure 5.2 helps to clarify the relationship beween the

diatonic spelling and the prolongational view of the piece.5 Specifically, the arrows pointing

from the E-major chords on level two of the graph back up to the E-major chord on

5The prolongational network, however, may be seen as oversimplifying the tonal structure, simply because
it cannot include features such as the interruption at the end of m. 29. We shall return to this matter in
Section 5.4.
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level one involve enharmonic shifts. This does not necessarily negate the possibility of

prolongation, but rather suggests that it may be a different kind of prolongation than the

kind normally seen in tonal music. The transformational network format thus allows for

a clear perspective on enharmonic progressions from both transformational foreground and

tonal background viewpoints. We shall continue to weigh the relative merits of prolongational

and transformational analysis techniques in the next section, where we shall examine how

Wolf also uses directional tonality to transcend traditional harmonic practice.
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Figure 5.2: Transformational network describing Wolf, “Und steht Ihr früh”
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Und steht Ihr früh am Morgen auf vom Bette, And when you rise early from your bed,
Scheucht Ihr vom Himmel alle Wolken fort, You banish every cloud from the sky,
Die Sonne lockt Ihr auf die Berge dort, You lure the sun onto those hills,
Und Engelein erscheinen um die Wette And angels compete to
Und bringen Schuh und Kleider Euch sofort. Bring your shoes and clothes.
Dann, wenn Ihr ausgeht in die heil’ge Mette, Then, when you go out to Holy Mass,
So zieht Ihr alle Menschen mit Euch fort, You draw everyone along with you,
Und wenn Ihr naht der benedeiten Stätte, And when you near the blessed place,
So zündet Euer Blick die Lampen an. Your gaze lights up the lamps.
Weihwasser nehmt Ihr, macht des Kreuzes Zeichen You take holy water, make the sign of the cross
Und netzet Eure weiße Stirn sodann And moisten your white brow,
Und neiget Euch und beugt die Knie ingleichen— And you bow and bend the knee—
O wie holdselig steht Euch alles an! Oh, how beautifully it all becomes you!
Wie hold und selig hat Euch Gott begabt, How sweetly, blessedly has God endowed you,
Die Ihr der Schönheit Kron empfangen habt! Who have received the crown of beauty.
Wie hold und selig wandelt Ihr im Leben; How sweetly, blessedly you walk through life;
Der Schönheit Palme ward an Euch gegeben. The palm of beauty was bestowed on you.

Figure 5.3: English translation of Heyse, “Und steht Ihr früh am Morgen auf vom Bette”
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5.2 Directional Tonality in Wolf’s “Der Mond”

Analysis of the song “Und steht Ihr früh” in the previous section demonstrated how

diatonic transformations might clarify prolongations that involve enharmonic progressions.

A similar transformational approach is also useful for the analysis of other extraordinary

features of nineteenth-century tonal practice.6 Figure 5.5 shows the score to Hugo Wolf’s

“Der Mond” from the Italianisches Liederbuch, Figure 5.6 presents a mod-7 transformation

network describing the song’s prolongational structure, and Figure 5.7 gives an English

translation of the text. Figure 5.8 gives a middleground sketch derived from the prolon-

gational network in Figure 5.6.7 My sketch in Figure 5.8 does not account for any of the

phenomenological confusion that may result from the song’s ending a third below where it

began. Such a tonal reading nevertheless offers a strategy for listening to the piece in order

to make sense of the relationship between the beginning and the end. Knowing how the

song ends, one may be able to hear the opening contextually with reference to the ending

key. In Figure 5.8, the mediant chord serves as a harmonic substitute for the opening tonic.

Since there is no internal musical evidence of this substitution at the opening of the piece,

it is perhaps more accurate to conceive of the piece as missing its opening. It is as though

the listener has arrived late and enters the recital in the middle of the first song. This

interpretation of the directional tonality seems to resonate with the effect of hearing the

opening of the text. The poem’s first few lines seem like such a non sequitur in the context

of the song cycle that one may wonder about the significance of this story about the moon

complaining.

All of the chords that are shown with open noteheads in Figure 5.8 appear on level one of

Figure 5.6, though Figure 5.8 adds the repetition of the final V–I progression that supports

the Urlinie descent from 3̂ to 1̂. All chords that have stems in Figure 5.8, except for one

extra D[ chord, are present on level two of Figure 5.6. (The bass-clef slur from B[ in measure

6 to G[ in measure 9 indicates that the D[ in measure 8 is a more foreground event.) In

an ideal transformational graph of this type, the deepest level could contain only one chord:

the tonic. In this case, however, the song’s directional tonality eliminates this possibility. If

one were to imply a conceptual tonic chord preceding the opening E[-minor chord, a closed

tonal graph would obtain. Another possibility (one that I find more compelling) would be

to show an arrow from the single tonic chord on level 1 to the first E[-minor chord on level 2

that displays a transformation other than (0,0). In this case, the ordered pair accompanying

6For background on tonal pairing and directional tonality, and other useful analytical approaches to music
that displays several different types of multiple-key combinations, see Kinderman and Krebs 1996.

7Many interesting foreground details of the song—especially in the vocal line—are missing in this
middleground sketch, which is designed simply to show the value of the auxiliary-cadence interpretation
of the song’s directional tonality.
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that arrow (from C[ major to E[ minor) would be (4,2). Whereas the Schenkerian sketch

essentially normalizes the song with regard to its tonal interpretation, the transformational

graph highlights the tonal problem created by directional tonality. In this case, the analysis

dramatizes one of the central issues concerning the song’s tonal structure: If it is going to

end in C[ major, why does it begin in E[ minor?

How this tonicized E[-minor chord functions with respect to the tonal scheme is revealed

in the tonal relationships that unfold over the course of the short song. The way in which the

song clarifies the function of the first chord parallels the structure of text, which begins with

a personification of the moon (in E[ minor), then continues by blaming the narrator’s lover

for the moon’s distress (in G[ major), then mourns the loss of two stars from the heavens

(in G[ minor), and finally contextualizes the entire poem by revealing the metaphor of the

stars as the woman’s eyes (in C[ major). The listener thus only discovers the true key of the

piece when the real reason for the moon’s complaint and the missing stars is disclosed.

Composers of the nineteenth century capitalize on the ambiguities of chromatic harmony

in many different ways. In the present case, Wolf withholds the actual key of the piece

until the end, just as the text withholds the key to the central metaphor of the poem until

the end. In the previous example (Figure 5.1), enharmonic equivalence created a confusion

between different scale degrees that normally remain autonomous in tonal music. In both

cases, the transformational graphs highlight the ambiguities while the Schenkerian sketches

downplay them. The strength of the Schenkerian approach is that it shows a way out of

the tonal ambiguity and offers the cognitive tools for attaining a tonal hearing of the piece.

When the prolongational structure is reconceived from a transformational viewpoint, the

ambiguities of chromatic harmony become apparent because they create inconsistencies in

the graph structure. While the diatonic transformational viewpoint is also tonally normative,

it carries less theoretical baggage: No chord has any expectation of moving to any other

chord in particular; there is no requirement for a monotonal analysis; there is no need to

reconcile the music to an Ursatz structure; and post-tonal works can receive similar types

of analysis. I would not wish to abandon Schenkerian analysis, even in the face of highly

chromatic music. It remains the more useful interpretive tool for tonal music. Nevertheless,

the mod-7 transformational viewpoint can serve to elucidate the ambiguities of chromatic

harmony. In the next section, we shall continue to use a diatonic approach in order to analyze

the highly chromatic opening of Wagner’s Tristan Prelude using both prolongational and

transformational methodologies.
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Figure 5.6: Transformational graph of Wolf, “Der Mond hat eine schwere Klag’ erhoben”
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Der Mond hat eine schwere Klag’ erhoben The moon has raised a grave complaint
Und vor dem Herrn die Sache kund gemacht; And made the matter known unto the Lord:
Er wolle nicht mehr stehn am Himmel droben, He no longer wants to stay in the heavens,
Du habest ihn um seinen Glanz gebracht. For you have robbed him of his radiance.
Als er zuletzt das Sternenheer gezählt, When he last counted the multitude of stars,
Da hab es an der vollen Zahl gefehlt; Their full number was not complete;
Zwei von den schönsten habest du entwendet: Two of the fairest you have stolen:
Die beiden Augen dort, die mich verblendet. Those two eyes that have dazzled me.

Figure 5.7: English Translation of Heyse, “Der Mond hat eine schwere Klag’ erhoben”
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5.3 Post-Functional Progressions in Wagner’s Tristan und Isolde

As we have seen in the previous two sections, mod-7 transformations are useful for

clarifying enharmonic progressions and directional tonality. They are also useful for

interpreting extreme examples of nineteenth-century chromatic harmony from a diatonic

tonal perspective. While examining the affinities of many examples of chromatic harmony

to transformations within octatonic and hexatonic collections is often useful, it is also a

worthwhile pursuit to place the chromatic passages analytically within the work’s overall

diatonic context. For this purpose we shall find the guidelines in Table 2.2 to be useful.

Providing a diatonic context for highly chromatic passages may also serve to clarify functional

ambiguities that tend to obscure the possibility of prolongational analysis. The unusual

chord resolutions present at the opening of the Prelude to Wagner’s Tristan und Isolde will

provide a preliminary example of chord successions involving exclusively atypical resolutions

of tertian chords that normally resolve functionally. A piano reduction of the excerpt is given

in Figure 5.9(a). Typical functional resolutions begin with the B dominant-seventh chord

(6) resolving to the E dominant ninth chord (7).

It is fortunate that there are many dominant-seventh chords in the passage, as they can

be used to decide the key to use in deciding the diatonic spelling. The resulting key scheme

is A in mm. 0–5, C in mm. 6–9, E in mm. 9–15, and A in mm. 16–17. There are two

viable approaches to the diatonic spelling of this excerpt. The distinction between these

two approaches rests on the ambiguity in Rules 1 and 2 of Table 2.2 regarding when to

prefer tertian chord spellings (functional chords) over scale-based chord spellings (altered

dominants). Figures 5.9(a) and 5.9(b) show these two interpretations. Figure 5.9(a) strictly

follows the scale degrees in Table 2.1 for the keys in the key scheme given by the dominant-

seventh chords. In Figure 5.9(b) every verticality is spelled as a tertian chord and participates

in diatonic-interval root motion following the guidelines in Table 2.2.8 The difference between

the two interpretations is a matter of dissonance. Whereas the first interpretation presents

passing chords as dissonant entities, the second interpreatation prefers all consonant chords

(which the ear may accept more readily at the typical performance tempo).9

The scale-based spelling has distinct advantages in terms of defining the function of each

pitch and verticality (and tuning the chords accordingly). A linear sketch of this spelling of

8Note the non-diatonic root motion between chord 2 (E7) and chord 3 (a[∅7). This is the result of a
change of tonic (and thus diatonic scale) between the two chords. Also, the apparent non-diatonic root
motion from the A[+6 at the end of m. 10 to the B 7

[5 and B7 in m. 11 is also functionally mitigated by the
adherence to the guidelines in Table 2.2. Further, the acoustical method for finding root representatives
outlined in Table 4.1 revises our root progression A[, B, and B to the root progression C, F, and B, which
reveals a better diatonic basis for the progression than our original observation suggested.

9Smith (1986) also capitalizes on the multiple interpretations of this passage resulting from opposing
linear and harmonic views.
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the Prelude, while abandoning the grounding of our theoretical apparatus, would highlight

the functional discharge of chromatically inflected scale degrees. Following each chromatic

line in this way forms a rewarding way of hearing the music. With regard to the use of mod-7

transformations, however, it will be more useful for us to be able to refer to the chords by their

root and quality. Figure 5.10 uses typical designations for the tertian chords in Figure 5.9(b)

to provide a mod-7 prolongational network describing the passage. Level 1 of the graph shows

the prolongation of the E dominant seventh chord between chords 2 and 7, and the deceptive

resolution of that chord in the key of A minor. This prolongational view follows most other

scholars’ tonal views of the passage. Level 2 includes the intermediate dominant sevenths

prolonging the E7 by arpeggiation and the neighboring “Tristan” chords that precede each.10

Finally, level 3 shows all of the intervening chromatic passing chords between each half-

diminished and dominant seventh pair. The prolongational structure shown in the network

is translated into a prolongational sketch in Figure 5.11. The linear analysis displays specifics

of the voice leading that may only be implied in the transformational network and certainly

offers more sophistication and analytical detail. But without the formalism of the mod-7

graph and the adherence to tonally based diatonic spelling strictures, the analytical decisions

leading to the unique details of the sketch in Figure 5.11 may seem to have been arbitrary.

Our two diatonic readings of this familiar excerpt suggest that any example of chromatic

harmony may be analyzed diatonically provided that the analyst be able to determine the

keys through which the music moves. A consistent diatonic reading of other even more highly

chromatic music may thus be possible using the spelling strictures in Table 2.2, as long as

the key can be determined from the diatonic collection, key-defining sonorities, or traditional

functional resolutions of dissonances.11 The value of using a diatonic model for such highly

chromatic music lies in the diatonic scale’s ability to imbue the chromatic collection with

tonal function, and thus participate in a tonal reading of the entire piece. In the next

section of this dissertation, we shall take a similar approach to an example where functional

progressions still define the key, but the complexity of the chords used obfuscates the root

analysis and sometimes also the chords’ functions.

10It would certainly also be correct to show the half-diminished neighbor chords on a shallower analytical
level than the dominant sevenths. This has not been done for the sake of clarity and conciseness in the
graph.

11Our analytical apparatus may thus form an interesting (though not definitive) test of Schoenberg’s claim
that his “atonal” music is in fact “pantonal”, implying many keys.
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Figure 5.9: Wagner, Tristan und Isolde, Prelude, mm. 1–17, Score
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(b) Tertian Spelling
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Figure 5.9, continued
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Figure 5.11: Prolongational Sketch based on Figure 5.10
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5.4 Non-Tertian Progressions in Ravel’s Valses Nobles

Now that we have seen how a diatonic approach can clarify tonal function in highly

chromatic passages, we shall now turn to an example where our root-finding method will aid

in clarifying the tonal function of non-tertian and extended-tertian chords. We shall only

explore the first waltz in Ravel’s Valses Nobles et Sentimentales, but an analysis the rest of the

suite would reveal a largely consistent extended-tonal language throughout.12 The reductive

analysis of Ravel’s music is hardly novel or inappropriate since, as reproduced by Chong

(2002, Vol. 2, p. 1, Ex. A.1), Ravel himself reduced one of the Valses Nobles et Sentimentales

(VII) down to a basic diatonic functional progression. This is largely the approach taken by

Chong in his own analyses of Ravel’s other works, reconciling extended-tonal features of each

work to typical Schenkerian diminution patterns and functional progressions. The analytical

techniques that we have developed in this dissertation simply codify and theoretically support

this technique of simplifying unusual tonal features down to their basis in common-practice

tonality. My use of root (representative) analysis for Ravel’s “polychords” is supported by

Kaminsky (2004). I do not claim that the particular fundamental-bass analysis provided

here is in any way definitive.

Figure 5.12 displays the score to the first of Ravel’s Valses Nobles et Sentimentales in G

major. Diatonic spelling in Figure 5.12 is based on the strictures in Table 2.2. Recall that

the only information required for diatonic spelling using Table 2.2 is the current key center

and mod-12 pitch class numbers of all notes. The reference scale for mm. 1–8 is based on the

tonic pitch class G. Then mm. 9–14 expand an extended-tertian applied dominant to A. The

extended A chord that arrives in m. 15 tonicizes D and is arpeggiated through m. 19 before

resolving to a D chord in m. 20. While a D pedal point extends through m. 30, the diatonic

spelling of the chords above the pedal point has been determined independently of the

repeated low D. An extended-tertian but functional V/V–V–I progression in E that resolves

on the downbeat of m. 33 suggests a diatonic interpretation based on that key in mm. 33–38.

Beginning in m. 39, the music becomes more harmonically active and ambiguous, culminating

in a complete chromatic circle-of-fifths progression in mm. 57–60.13 In mm. 39–44 the music

alternates between extended dominant chords built on C] and G. The marking “enh.” that I

have added to m. 45 and also later in the movement indicates that an enharmonic shift that

is not warranted by the spelling rules given in Table 2.2 has been made in the music for the

sake of reading ease. In all such cases, there is a clear shift from flats to sharps or vice versa,

12McCrae (1974) provides colorful analyses of each of the waltzes, and also discusses their possible
relationships with earlier sets of waltzes by Schubert (his own Valses Nobles, D. 969, and Valses Sentimentales,
D. 779) and Schumann (Papillons, Op. 2).

13For a mathematical model of the structure of this interesting sequence, see (Smith 1975).
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and the maintenance of a single diatonic spelling of the common pitch class(es) between the

two chords will rectify the convenience spelling to the rule-derived spelling. A majority of

the chords between mm. 45 and 60 are extended dominants, and the diatonic spelling of this

section is governed by tertian spelling and the maintenance of common tones. An altered

reprise of the introductory four measures (cf. mm. 1–4) appears in mm. 61–64, tonicizing

G. The introduction of F\ in mm. 67–70 suggests a tonicization of C. No C chord appears

in m. 71, however, which tonicizes A in a manner similar to mm. 11–14. The arpeggiation

of the extended-tertian A-dominant chord in mm. 75–78, in this case, resolves one measure

early to D in m. 79 as the dominant to G (cf. mm. 15–20).

Figure 5.13 translates our extended-tertian analysis into a mod-7 prolongational network.

While my prolongational reading here is largely based on Schenkerian paradigms, the

deepest level of the transformational network is different from the background of the

deep middleground sketch shown in Figure 5.14. This is because there is no notation

in prolongational networks for interruption.14 For this reason, Figure 5.14 gives a more

comprehensive tonal reading of the piece. The traditional 3-line Ursatz with an interruption

that is shown in the sketch suggests a relationship between the form of this waltz and other

traditional dance forms.15 The highly functional background may also help us make sense

of the complex non-functional foreground progressions and non-tertian chords. In the next

section, we shall use mod-7 transformations to posit a prolongational reading of an even

more extravagantly non-functional movement by Ravel.

14We could certainly invent one, but it would be extraneous to the group structure of the mod-7
transformation networks. For example, we could reverse the direction of the arrow from the tonic to the first
structural dominant to show it as “back-relating”.

15My preference would be to call this a rounded binary form, but it certainly has ternary characteristics
as well. Both forms, of course, may be read with an interruption.
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Figure 5.13: Transformational Graphs of Ravel, Valses Nobles et Sentimentales, I
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(a) Prolongation of (C], 2), mm. 39–44
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Figure 5.13, continued
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(e) Prolongation of (D, 2), mm. 57–61
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Figure 5.13, continued
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Figure 5.14: Prolongational Sketch of Ravel, Valses Nobles et Sentimentales, I
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5.5 Post-Functional Non-Tertian Progressions

in Ravel’s Gaspard de la Nuit

The movement by Ravel that we have just examined is governed by traditional form and

delineated by a functional cadential structure. Hence it will be worthwhile to attempt to

use our prolongational theory to address a movement by Ravel that follows a freer form and

displays more ambiguity with respect to traditional tonal harmony.16 Figure 5.15 shows the

score to “Ondine” from Ravel’s Gaspard de la Nuit, and Figure 5.16 provides a middleground

prolongational sketch of the work. We can evaluate the prolongations shown in Figure 5.16

using the set of criteria given in Table 4.4. For the most part, the sketch satisfies question 1

concerning whether the passage begins and ends on the same harmony. In the few cases

where it does not, the passing chords either smooth the progression from one structural

(open-notehead) chord to another, or they connect two chords that can be said to possess

the same harmonic function. One such instance is the transitory progression in mm. 15–23,

which forms the second part of the transformational network in Figure 5.17. The return

in mm. 15–16 to the harmony, melody, and texture from m. 1 marks the beginning of this

elaborated tonal motion. The goal chord is the G] dominant harmony in m. 23 that supports

4̂ of the Urlinie. Another passage that violates the desideratum of the first consideration

in Table 4.4 can be found in mm. 63–67, a prolongation that connects a G] chord with a

B-minor chord. This prolongation is graphed in Figure 5.18. In this case, the two chords can

be said to serve the same harmonic function. Figure 5.16 shows that they both take part in

a dominant prolongation. Specifically, the G] in m. 63 begins a bass arpeggiation through

the B in m. 67, which is inflected to B] in m. 73 and finally returns to G] in m. 81.

Now let us address the second consideration in our prolongational rubric, regarding

acoustical stability. Many of the structural chords in my sketch are transpositions of the

opening major triad with an added minor sixth. Assuming that the neighbor formations in

the accompaniment pattern can allow us to reduce the added sixths out as non-chord tones,17

the structural harmonies are often more stable than the intervening chords. The first part

of Figure 5.17 graphs the work’s initial prolongational span (mm. 1–15), and Table 5.1 uses

our instability units from Section 4.2 to show the relative acoustical stabilities of each of the

chords. Recall that the instability units, where 1 is the most stable, and higher numbers

16Bhogal (2004) compares this piece to sonata form, provides a deep middleground bassline sketch, and
then provides a gender-based hermeneutic interpretation of the piece. Haapanen (2004) also extends a
Schenkerian approach to treat this work.

17The fourth consideration in our list of prolongational criteria may aid in supporting this reading. Bhogal
(2004) and others have asserted that this neighbor motion is the primary motive of the piece. My own
analysis does not focus on this interesting observation, but may certainly be enriched by this point of view.
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indicate relative degrees of acoustical instability, was one interpretive measure that helps

us to gauge a chord’s relative salience. The first and last chord, when reduced to their

triadic forms, have instability level 5, but with the added minor sixths, the instability rises

to 13. Interestingly, the added fourth that appears in the F]-minor chord in m. 11 does not

change the instability of that chord at all. Many of the later prolongational spans feature

a clearer distinction between acoustically simple chords and more complex extended chords.

From Table 5.1 we can see that, even if the prolonging chords in this passage are indeed more

stable than the structural chords, at least the structural chords are acoustically distinguished

from the intervening harmonies.

Furthermore, these added sixth chords are motivically significant. Following the many

extravagant excursions, the music frequently returns to an added sixth chord presented in a

texture similar to the opening. The most obvious of these returns to the opening texture and

chord type can be seen in mm. 31, 42, and 81. Further, these particular excerpts also present

a melody that is the same as or similar to the left-hand melody in m. 3, thus enhancing this

thematic connection. These motivic connections have played a significant role in my reading

of prolongation in this work. My sketch shows the first chord of each reprise of the opening

texture and harmony as initiating a new prolongational span at some level of the structure.

In addition to mm. 1, 31, 42, and 81, these returns to the opening texture are shown as

initiating prolongational spans in m. 24, m. 46 (see especially m. 48), and m. 75, where the

texture finally coalesces in m. 76. The last reminder of the opening texture and harmony is

the final sonority of the piece in m. 90.

A second motive in the piece also appears at the beginning of many prolongational spans.

This motive is harmonically marked by the use of tritone-related neighbor chords. For

example, in m. 43 the progression D]add 6 A9 D]add 6 accompanies the main melody (from

m. 3). This progression continues a gestural/rhythmic motive begun in m. 39 where an

accompaniment pattern similar to the opening is interrupted by a quickly ascending and

descending flourish that arpeggiates the neighbor chord. This gesture and chord progression

are combined to accompany a new melody in mm. 46, 51, 58, etc. This new melody typically

involves a stepwise scalar ascent followed by an upward leap to a descending appoggiatura.

This appoggiatura often coincides with the flourish and the neighbor chord. In my sketch

this motive initiates each new prolongational span within the linear intervallic pattern that

stretches from m. 37 to m. 63 (i.e. mm. 42, 46, 51, 58, and 61). Thereafter it is liquidated in

a much more active linear intervallic pattern from m. 63 to the climax of the piece in m. 67.

The prolongation of a B-minor chord in m. 67 inverts the stepwise-ascent motive. This

inversion can be seen in the right-hand eighth notes that initiate each flurry of thirty-second

notes. The appoggiatura is now gone from this melody, since the leap at the end of the
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stepwise line in m. 67 is now on a weak beat. To begin the dénouement, m. 67 repeats with

the bass an octave higher and the melody an octave lower in m. 68. Through the rest of the

piece, we continue to hear neighbor motions reminiscent of this motive, but the ascending

stepwise melody never reappears.

The types of prolongation described here certainly follow traditional functional paradigms

to a lesser degree than the earlier examples we have examined. Nevertheless, we were still

able to use harmony and voice leading to posit a prolongational reading. In music with

such a highly structured tonal scheme rooted in tertian harmony, it might be unsatisfying

to provide a legitimate tonal analysis that stops short of showing prolongation. In the final

chapter of this dissertation, I shall briefly summarize some of the conclusions that we have

drawn in the first five chapters, and I shall discuss the possibility of using or expanding this

theory to examine other repertoires.
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Figure 5.15: Ravel, Gaspard de la Nuit (1908), “Ondine”, Score
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Figure 5.15, continued
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Figure 5.15, continued
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Figure 5.15, continued
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Figure 5.15, continued
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Figure 5.15, continued
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Figure 5.15, continued
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Figure 5.15, continued
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Figure 5.15, continued
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Figure 5.15, continued
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Figure 5.15, continued
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Figure 5.15, continued
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Figure 5.16: Prolongational Sketch of Ravel, Gaspard de la Nuit, “Ondine”
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Figure 5.17: Transformational Graph of “Ondine”, mm. 1–23
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Figure 5.18: Tranformational Graph of “Ondine”, mm. 63–67

Table 5.1: Relative Acoustical Instability in the First Prolongational Span of Figure 5.16

m. 1 m. 6 m. 9 m. 10.4 m. 11 m. 15

Chord C]add[6 A]9 d]add6 B7 f] C]add[6

Prime Limit 5 7 7 7 5 5
(add6=13) (add6=13)
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CHAPTER 6

CONCLUSIONS

6.1 The Use of Diatonic Theory for Extended Tonal Music

In this dissertation, traditional tonal theories (fundamental-bass theory, tuning theory,1

diatonic scale theory, and the theory of contrapuntal prolongation) have been combined to

form the underpinning for an examination of certain extensions of tonality. We shall now

take a large view of this research and summarize how it functions with regard to the post-

common-practice repertoire. After providing a synopsis of the theory and its origins, we

shall examine more closely the role that the diatonic scale must play in the music in order

for this analytical method to be useful. This will allow us to project what other repertoires

one may also study in the future using this diatonic model.

As we discovered in Chapter 2, tuning theory and diatonic scale theory are inter-

connected—even inseparable. Their combination allows us to establish a clear and stable

system of scale-degree functions in tonal music. In order to visualize these functions and

their musical implementations, Chapter 3 enumerated several graphical means of displaying

harmonic relationships in the tonal space that we built in Chapter 2. The Tonnetz and

just-intonation and diatonic transformational networks offer useful spatial metaphors for

tonal function, motion, and prolongation. So that we might use these networks in the

analysis of extended-tonal music, Chapter 4 developed tools for supporting analyses of

chordal hierarchies. Many other scholars have established contrapuntal analytical methods

that complement the largely harmonic-function-based methods given here.2 In fact, a

prolongational analysis would be incomplete without linear analysis. Jones (2002), however,

has suggested that it is dangerously easy to select analytically meaningless examples of

contrapuntal fluency without first choosing the structural harmonies. For this reason,

Chapter 4 provides methods for finding structural harmonies based upon harmonic function

and chord construction. Once a preliminary chordal hierarchy is established, linear analysis

1Tuning theory may not be a tonal theory itself. It nevertheless forms the basis of certain tonal theories.
2Q.v. Section 1.3 and 1.4.
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becomes a meaningful way of refining the prolongational analysis and discovering how the

transient sonorities arise as elaborations of the structural harmonies.

Although our goal was the analysis of post-common-practice music, all of the tonal

theories that we drew upon for this purpose are dependent upon the diatonic basis of

tonal music. If the music distorts this diatonic background in particular ways, we can still

analyze it from a tonal perspective. Specifically, in Chapter 5 we explored how enharmonic

progressions, while causing some “vertigo” at the surface level, may be rectified at a deeper

level to a traditional diatonic structure and thus may still function within a prolongational

view of the music. Further, we examined how directional tonality may be either subsumed

within a prolongational view or emphasized by its transformational graph structure. We

also examined how a diatonic background may even inform the analysis of tonal music that

explores the limits of nineteenth-century tertian chromaticism. Finally, we tested our tools

for asserting prolongational structures within music that features non-functional progressions

and non-tertian harmonies.

There is widespread acceptance that the music that we have examined is tonal or at least

relies heavily upon tonal constructs. The extended-tonal repertoire, however, sometimes

presents seemingly insurmountable obstacles to tonal analysis. Some may argue that Ravel’s

music is only tangentially related to the tonal musical repertoire. Nevertheless, to the extent

that this repertoire relates to traditional tonality, that relationship deserves careful and

thorough exploration using the full arsenal of tonal theoretical apparatus. In any music

to which a set of popular chord symbols can be applied, even if the progressions do not

follow traditional functional paradigms, the chords’ relationships may be expressed within

the tonal space constructed in this treatise. While this tonal space derives its strength from

its diatonic basis, its inherent diatonic bias does impose a limit on its explanatory power. It

might be possible to attempt to force some atonal music (e.g. parts of Schoenberg’s Op. 11

Piano Pieces) into a diatonic framework,3 but to the extent that this music relies on post-

tonal techniques, our tonal space is powerless to represent those structures.4 I hope that this

theory may, however, enrich the study of a great deal of other post-common-practice music.

Mod-7 prolongational networks may serve to illuminate the tonal features of music written by

many of the neo-tonal composers of the twentieth century, such as Barber, Bartók, Britten,

Copland, Debussy, Ginastera, Hindemith, Martinu
a
, Menotti, Pärt, Persichetti, Prokofiev,

Rorem, Shostakovich, Sibelius, Vaughan Williams, and many others.

3Schoenberg himself (1931) reharmonized the atonal melody from his Variations for Orchestra, Op. 31,
using tonal harmony.

4Music that makes clear reference to tonality while also exhibiting structures that are best shown with
atonal analysis still requires a combination of analytic techniques. Given that transformational networks
may be used to show features of both tonal and atonal music, a unified notation for showing both tonal and
atonal structures in the extended-tonal repertoire may be possible.
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This analytical method may be extended to the study of other repertoires as well. We

have seen that the reference scale given in Table 2.1 privileges modal mixture as a source for

chromaticism.5 In fact, the theory reads any of the traditional modes (except for Locrian)

as fundamentally diatonic and analyzable within tonal space. Hence we can include pan-

diatonic music among the neo-tonal repertoires that may be examined in tonal space. This

inclusion of modal harmony also suggests that it might be possible to use our analytical

method to study the non-functional progressions of pre-tonal polyphony.6 The acceptance

of modality within this model of tonal space offers a potential path toward a tonal theory of

popular music in the twentieth century as well. These repertoires, however, are beyond the

scope of the present study.

6.2 The Place of This Work Within the Field of Music Theory

In this dissertation, we have explored how some older theoretical views of tonality may

be revived, reevaluated based on current research, and combined with modern theories in

fruitful ways. This work thus joins a growing body of eclectic approaches to analysis.7 This

dissertation is a formalization of my intuitions about tonal and neo-tonal music. While my

goal is to build theories objectively using scientific, structuralist, and formalist techniques,

all theories are necessarily still based in subjectivity.8 This subjectivity is not to be seen as a

weakness. Just as my view of extended tonal music has been enriched by learning post-tonal

analytical approaches to this repertoire, I hope that other musicians will find personal value

in a prolongational view of this repertoire.

The successful combination of two or more different theoretical views is nothing new in the

field of musicological study. Eschewing one of two theories that appear to disagree, however,

is also unfortunately commonplace in past scholarship.9 For example, it is a lamentable

fact that, during the twentieth century, there has been a rift between tuning theory and

mainstream music theory. It is problematic that some tuning theorists have accorded a

5Recall that, as a result, both tonicization and modulation require transposition of this scale to the
temporary tonic.

6Adams’s (2005) distinctions between essential and inessential chromaticism in sixteenth-century
polyphony are somewhat related to my own differentiation of modal mixture from tonicization and my
provisions for respelling certain degrees of the scale in Table 2.1.

7Postmodern scholarship has been notoriously accepting of diverse viewpoints. For an intriguing
postmodern view of Schenker’s theory see Dubiel 1990.

8Clifton (1975, 69) discusses the inherent subjectivity of scientific endeavor: “As any true scientist will
tell you, scientific objectivity is just as impure as intuitive objectivity. To be sure, it is a valuable ideal, but
it is also a human invention, as fallible as it is seductive.” See also Brown and Dempster 1989, Brown 1996,
Mailman 1996, Sayrs and Proctor 2002, and Childs 2005.

9Often two conflicting theories merely focus upon different parameters of the same phenomenon. We have
seen that this is certainly true of diatonic theory and tuning theory.
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Pythagorean—even religious—significance to the numerology of just intonation’s beautiful

proportions.10 Reputable music theorists who work in areas tangential to tuning theory seem

to have felt a need to distance their work from the just-intonation camp. One example of

this is Carey and Clampitt’s (1989) own introductory remarks:11

In the past, [a principled basis for tonal music] was sought in the physical

phenomenon of the overtone series. This approach was found wanting in

important respects: not only did the overtone hypothesis fail to generalize to

non-triadic music, but it also inadequately and inconsistently explained features

within the major-minor tonal system, such as the status of the minor triad as a

consonance and as functionally equivalent to the major triad.12 In recent years,

diatonic set theory has provided an alternative perspective, which generally has

proceeded from the assumption of an ideal equal division of the octave.

While Carey and Clampitt implicitly acknowledge the possibility that tuning theory may

also have some explanatory power, they cite no resources that defend tuning theory against

the critical appraisals to which they refer the reader. This is perhaps because in recent years

tuning theory has progressed apart from academic music theory.13 Many theorists in the

twentieth century have been justifiably critical of the explanatory power of the harmonic

series, but the effective removal of the field of musical tuning from the mainstream in music

theory is unfortunate and perhaps also detrimental to musical scholarship. Theorists should

indeed learn from the failings of past theories based upon just intonation, thus taking care not

to invoke unsubstantiated numerological and theoretical ideals in support of their assertions

and analyses. Ideally the development and revision of theories comes most profitably from

their exchange and from discussion of their points of disagreement.

It is my hope that the relationship between diatonic theory and tuning theory introduced

here may form part of a renewed desire in the music theory community to recombine newer

theories with discarded historical ideas in enlightening ways. In addition to tuning theory

and diatonic theory, this dissertation has brought together other theories as well. We have

paired transformational analysis with hermeneutics (in Section 5.1), dualist function theory

(based on Harrison 1994) with linear analysis (in Chapter 4), acoustics with root analysis (in

10To be fair, just-intonation enthusiasts are not the only theorists who have had an unhealthy fancy for
numerology. See, for instance, Clark 1999. For an intriguing and entertaining discussion of numerology as a
symptom of a form of innumeracy (mathematical illiteracy), see Paulos 1988.

11Recall that in Section 2.2 we found Agmon (1989) also separating his work from tuning theory.
12Carey and Clampitt’s footnote: “The overtone hypothesis has been discussed at length elsewhere. We

refer the reader to critical appraisals in Babbitt 1972a and 1972b, Cogan and Escot 1976, 139–141, and
Lerdahl and Jackendoff 1983, 290–293.”

13The one English-language theoretical journal devoted to tuning is Xenharmonikôn, but there is a very
active internet community of tuning theorists.
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Section 4.1), and number, matrix, and group theory with scale-degree function and diatonic

spelling (in Chapter 2). There is a seemingly limitless ways of combining ideas from the many

different subfields of music-theoretical thought. I hope that this study and any future works

that it inspires are successful in combining established scientific, analytical, and rhetorical

techniques to further challenge the taxonomies that have historically subdivided our field.
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APPENDIX A

GLOSSARY OF MATHEMATICAL TERMS AND SYMBOLS

P is the set of prime numbers.1

Q is the set of rational numbers.

R is the set of real numbers.

Z is the set of integers.

x ⊂ y indicates that the set x is a subset of the set y. See discussion at set.

x ∈ y means that the object or number x is an element of the set y. See discussion at

set.

|x| is an abbreviation for the absolute value function.

bxc represents the floor or trunc function, which returns the greatest integer less than or

equal to x.

dxe symbolizes the ceiling function, which returns the smallest integer greater than or

equal to x.

bxe denotes the nearest-integer (nint) or rounding function, which returns the smallest

integer greater than or equal to x for x with fractional part > 1
2

and the greatest

integer less than or equal to x for x with fractional part < 1
2
. For x with fractional

part = 1
2
, different mathematical applications may require rounding up or down. In

this dissertation, when x has fractional part = 1
2
, the function is defined to give the

integer y with smallest absolute value such that |y| > |x|.

{x, y, z} indicates that the items or expressions enclosed in curly brackets form or define a

set.

1Many of my glossary entries are drawn from the glossary in Hook 2002. A few have also been drawn
from the wonderful resource <http://mathworld.wolfram.com/>.
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abelian group This is another name for commutative group.

absolute value The absolute value function on a number x, commonly designated |x|,
returns x if x ≥ 0 and −x if x < 0. This allows for comparable measurements of

distance away from 0 in both the positive and negative directions.

additive group Any group where the group operation is ordinary addition, or possibly

addition mod n, may be called an additive group.

associative A binary operation ⊗ on a set S is associative if the equation (x⊗ y)⊗ z =

x⊗ (y⊗ z) holds for all x, y, and z in S. If ⊗ is associative, then we may simply write

x⊗ y ⊗ z (without parentheses) with no danger of ambiguity. A group operation is

required to be associative by definition.

bijective A function is bijective if it is both injective (one-to-one) and surjective (onto).

binary operation If S is a set, a binary operation on S is a means of combining two

elements of S to produce an element of S. Familiar examples of binary operations

include the operations of addition and multiplication on the set of real numbers. In

this dissertation, we shall use the conventional symbols for the familiar operations of

addition, multiplication, division, etc.; and we shall represent a binary operation on

two elements of a set (where the binary operation on the set has already been defined)

by juxtaposing two variables representing elements of a set (e.g. xy).

cardinality The number of distinct elements in a finite set S is called the cardinality of

S.

column vector A column vector is a m×1 matrix—that is, a matrix consisting of a single

column of values.

commutative If a binary operation ⊗ is defined on a set S, and if x and y are any two

elements of S, then x and y are said to commute if their product does not depend

on order—that is, x⊗ y = y ⊗ x must hold for all x and y in S. A group operation

is not required to be commutative.

commutative group If a set can be shown to be a group, and its group operation

satisfies the conditions of the commuative property (i.e. the product of two group

elements does not depend on their order), then the group may be called a commutative

group.

component A single object in an ordered n-tuple is called a component.
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determinant For every sqare (n×n) matrix, a value called the determinant of the matrix

may be calculated. For a 1× 1 matrix, the determinant is simply the unique entry in

the matrix. For a 2× 2 matrix  a1 a2

b1 b2

 ,

the determinant is a1 · b2 − a2 · b1; and for a 3× 3 matrix,


a1 a2 a3

b1 b2 b3

c1 c2 c3

 ,

the determinant is

a1 · b2 · c3 − a1 · b3 · c2 + a2 · b3 · c1 − a2 · b1 · c3 + a3 · b1 · c2 − a3 · b2 · c1.

Beyond the size 3× 3, a matrix’s determinant is typically derived recursively from its

submatrices. Matrices that have determinant 0 are said to be singular, and matrices

that have determinant 1 are said to be unimodular.

element One member of a set or group is called an element and can be denoted a ∈ A,

where a is the element, and A is the set.

function If A and B are sets, a function f from A to B may be thought of, informally,

as a sort of abstract computing machine into which one feeds an input x in set A

and from which emerges the output y in set B. More rigorously, the function f is

identified with the set of all ordered pairs (x, y) that satisfy the relationship defined

by f . The essential point of the definition is that the function determines one and

only one y in B for each x in A; it is possible, however, that two different xs may

produce the same y, or that some ys may not appear in association with any xs. (For

related definitions, see injective and surjective.) The unique y associated with the

element x is conventionally denoted f(x) (pronounced “f of x”), signifying the value

of the function f applied to the element x.

group If G is a set and ⊗ is a binary operation on G, then G is said to form a group if

the following three conditions are satisfied:

141



(1) the operation ⊗ is associative; that is, (x⊗ y)⊗ z = x⊗ (y⊗ z) for all x, y, and

z in G;

(2) there exists an identity element, an element of G such that x⊗ e = e⊗ x = x

for every x in G; and

(3) every element x of G has an inverse in G, an element x−1 such that x⊗ x−1 =

x−1 ⊗ x = e.

A group operation is not required to be commutative, but it may be. A general

group operation is often represented using multiplicative notation, and may even be

called “multiplication”, even if it bears little resemblance to the familiar multiplication

of numbers. The study of groups and their properties is the aim of group theory.

group operation The binary operation in the definition of a group is referred to as its

group operation.

homomorphism, homomorphic In general, a homomorphism is a function from one

mathematical structure to another of the same type (group, graph, etc.) that preserves

important structural relationships among the objects being mapped, whatever those

relationships may be. A function f from a group G to a group H is a homomorphism

if it preserves group products; that is, whenever x, y, and z are elements of G such

that xy = z, then the equation f(x)f(y) = f(z) holds in H.

identity element If a binary operation ⊗ is defined on a set S, then an element e of S

is called an identity element if, for every x ∈ S, x⊗ e = e⊗ x = x. For example, 0 is

the identity element for the operation addition in the set of real numbers, and 1 is the

identity element for multiplication. A group is required to have an identity element

by definition.

iff The word“if”with two“f”s is an abbreviation for “if and only if”. In mathematical terms,

an “if p then q” statement means that q is true whenever p is true, but possibly also

under other circumstances. An“iff p then q” statement, however, indicates that p must

be true for q to be true as well; otherwise q must be false.

injective A function f from a set A to a set B is injective (or one-to-one) if it always maps

distinct elements of A to distinct elements of B; that is, the only way the equation

f(x) = f(y) can hold is if x = y. If A and B are finite sets, an injective function from

A into B can exist only if the cardinality of A is less than or equal to the cardinality

of B.
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integers The set of integers, Z, includes the positive and negative whole numbers and zero

. . . , −3, −2, −1, 0, 1, 2, 3, . . . .

inverse If ⊗ is a binary operation on a set S, and the element e is an identity element

of S, and x is any element of S, then the element y in S may be called the inverse of

x if x ⊗ y = y ⊗ x = e. The inverse of x is often denoted x−1. Elements of a group

are required to have inverses by definition.

isomorphism, isomorphic In general, an isomorphism is a homomorphic function from

one mathematical structure to another that is bijective (one-to-one and onto). In other

words, the function creates a perfect one-to-one correspondence between the elements

of the two structures which moreover preserves all significant structural relationships

among those elements. Two mathematical structures are called isomorphic if there

exists an isomorphism mapping from one to the other. This means, intuitively, that

the structures are identical in all significant structural ways (although the elements

themselves may be different objects).

map, mapping A map is simply a function.

matrix Any rectangular array of numbers or other mathematical objects may be called

a matrix. A matrix arranged in m rows and n columns is called an m × n matrix.

(Examples of 2× 2 and 3× 3 matrices can be found in Section 2.3.) The value in the

ith row and jth column of a matrix A is typically denoted aij. If A is an m×n matrix,

and B is an n× p matrix (for the same n), then the product AB is the m× p matrix

defined by the equation (ab)ij = Ai1 ·b1j +ai2 ·b2j + · · ·+ain ·bnj; that is, the component

in the ith row and jth column of AB is obtained by multiplying each value in the ith

row of A by the corresponding value in the jth column of B and adding the results.

For square matrices (n × n), a value called the determinant of the matrix may be

calculated. When the determinant is 1, the matrix is said to be unimodular.

mod, modulo The operation c = a mod b returns the remainder or common residue of a
b
,

defined to be a nonnegative number smaller than b such that a−c
b

∈ Z. The set of

integers mod n forms an additive group of order n, and is commonly designated

Zn. Many everyday measurement systems use modular addition over Zn. For example,

clocks use mod-12 arithmetic, so that five hours past 10:00 in the evening is 3:00 in

the morning ((10 + 5) mod 12 = 3).

ordered pair An ordered pair is a kind of list of two objects. Any two objects x and y

(they can be numbers, elements of some set, or even objects of entirely different types)

143



can form an ordered pair (x, y), where x is the first component (or coordinate) and y is

the second component. Two ordered pairs (x1, y1) and (x2, y2) are equal if and only if

both x1 = x2 and y1 = y2. Note also that, because they are “ordered”, (1, 2) is different

from (2, 1). Ordered pairs are usually enclosed in parentheses, but other notations may

be useful as well.

ordered triple, ordered n-tuple By extension of the concept of ordered pair, we may

form ordered triples (x, y, z), ordered 4-tuples or quadruples (x, y, z, w), and larger

n-tuples.

prime number, primes A prime number (or prime integer, often simply called a “prime”

for short) is a positive integer p > 1 that has no positive integer divisors other than

1 and p itself. (More concisely, a prime number p is a positive integer having exactly

one positive divisor other than 1.) For example, the only divisors of 13 are 1 and 13,

making 13 a prime number, while the number 24 has divisors 1, 2, 3, 4, 6, 8, 12, and 24

(corresponding to the prime factorization 24 = 23 ·31), making 24 not a prime number.

The set of all primes is often denoted P.

prime limit Any rational number q = a
b

in lowest terms, where a and b ∈ Z, has prime

limit p iff a’s factors and b’s factors ⊂ {primes ≤ p}. In other words, if a rational

number q has a particular prime limit, all prime factors of both the numerator and

denominator of q in lowest terms are less than or equal to the prime limit. Those prime

factors that combine in various ways to form all members of the set of rationals with

prime limit p are called the set’s prime generators.

product While a product is normally the arithmetic result of ordinary multiplication, in

group theory, the product is the result of applying the group operation to two

elements of the group.

rationals The set of rational numbers, Q, includes all numbers that are expressible as the

quotient of two integers. (q ∈ Q iff q = a
b

where a and b ∈ Z.) Note that the integers

are a subset of the rationals. (Z ⊂ Q.)

real numbers The set of real numbers, R, includes all numbers both rational and irrational,

but no imaginary numbers. Note that the integers and the rational numbers are

subsets of the real numbers.

reciprocal matrix Also known as inverse matrices, reciprocal matrices are square n × n

matrices A and A−1 such that the product of A · A−1 = I, where I is the identity
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matrix. The identity matrix is a square matrix of with the value 0 in all components

except for the components along the diagonal i0,0, i1,1, i2,2, . . . , in,n, each of which

contains the value 1. See discussion at matrix for more on matrix components and

matrix multiplication.

rounding Rounding is the process of approximating a quantity for the sake of convenience

or necessity. The rounding of a rational or real number x to the nearest integer is given

by the nearest integer function, symbolized bxe. For x with fractional part = 1
2
, two

integers are equally proximate to x. In this dissertation, when x has fractional part

= 1
2
, the nearest integer function is defined to give the integer y with smallest absolute

value such that |y| > |x|.

row vector A row vector is a 1 × n matrix—that is, a matrix consisting of a single row

of values.

set A set is a collection of objects in which order has no significance, and multiplicity is

generally also ignored. Members of a set are often referred to as elements and the

notation a ∈ A is used to denote that a is an element of a set A. Further, the notation

A ⊂ B is often used to indicate that A is a subset of B, which means that every

element of set A is also an element of set B. The study of sets and their properties is

the object of set theory.

subgroup A subset H of a group G is called a subgroup of G if H itself forms a group with

respect to the same group operation defined in G. To show that a subset H forms a

subgroup of G, one must verify the following three conditions:

(1) H contains the identity element of G;

(2) H is closed under products—that is, if x and y are elements of H, then xy must

also be an element of H.

(3) H is closed under inverses—that is, if x is an element of H, then x−1 must also be

an element of H.

surjective A function f from a set A to a set B is surjective (or onto) if for every y in B

there exists some x in A such that f(x) = y. If A and B are finite sets, a surjective

function from A onto B can exist only if the cardinality of A is greater than or equal

to the cardinality of B.

vector Music theorists use the term simply to mean ordered n-tuple. (E.g., the interval-

class vector is an ordered sextuple.) In some circumstances it will be valuable to

represent a vector in the form of a matrix as a row vector.
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Trans. G. Chandler as “Rameau’s ‘Nouveau système de musique théorique’: An Anno-
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Temperley, David. 2000. “The Line of Fifths.” Music Analysis 19/3: 289–319.

. 2001. The Cognition of Basic Musical Structures. Cambridge, MA: MIT Press.

Tenney, James. 1988. A History of Consonance and Dissonance. New York: Excelsior.

Travis, Roy. 1959. “Toward a New Concept of Tonality.” Journal of Music Theory 3/2:
257–284.

. 1966. “Directed Motion in Schoenberg and Webern.” Perspectives of New Music
4: 84–89.

. 1970. “Tonal Coherence in the First Movement of Bartók’s Fourth String Quartet.”
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